Impact of Graupel Parameterization Schemes on Idealized Bow Echo Simulations

Rebecca D. Adams-Selin Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, and Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Rebecca D. Adams-Selin in
Current site
Google Scholar
PubMed
Close
,
Susan C. van den Heever Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Susan C. van den Heever in
Current site
Google Scholar
PubMed
Close
, and
Richard H. Johnson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Richard H. Johnson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effect of changes in microphysical cooling rates on bow echo development and longevity are examined through changes to graupel parameterization in the Advanced Research Weather Research and Forecasting Model (ARW-WRF). Multiple simulations are performed that test the sensitivity to different graupel size distributions as well as the complete removal of graupel. It is found that size distributions with larger and denser, but fewer, graupel hydrometeors result in a weaker cold pool due to reduced microphysical cooling rates. This yields weaker midlevel (3–6 km) buoyancy and pressure perturbations, a later onset of more elevated rear inflow, and a weaker convective updraft. The convective updraft is also slower to tilt rearward, and thus bowing occurs later. Graupel size distributions with more numerous, smaller, and lighter hydrometeors result in larger microphysical cooling rates, stronger cold pools, more intense midlevel buoyancy and pressure gradients, and earlier onset of surface-based rear inflow; these systems develop bowing segments earlier. A sensitivity test with fast-falling but small graupel hydrometeors revealed that small mean size and slow fall speed both contribute to the strong cooling rates. Simulations entirely without graupel are initially weaker, because of limited contributions from cooling by melting of the slowly falling snow. However, over the next hour increased rates of melting snow result in an increasingly more intense system with new bowing. Results of the study indicate that the development of a bow echo is highly sensitive to microphysical processes, which presents a challenge to the prediction of these severe weather phenomena.

Corresponding author address: Rebecca D. Adams-Selin, HQ Air Force Weather Agency 16th Weather Squadron, 101 Nelson Dr., Offutt AFB, NE 68113. E-mail: rebecca.selin.ctr@offutt.af.mil

Abstract

The effect of changes in microphysical cooling rates on bow echo development and longevity are examined through changes to graupel parameterization in the Advanced Research Weather Research and Forecasting Model (ARW-WRF). Multiple simulations are performed that test the sensitivity to different graupel size distributions as well as the complete removal of graupel. It is found that size distributions with larger and denser, but fewer, graupel hydrometeors result in a weaker cold pool due to reduced microphysical cooling rates. This yields weaker midlevel (3–6 km) buoyancy and pressure perturbations, a later onset of more elevated rear inflow, and a weaker convective updraft. The convective updraft is also slower to tilt rearward, and thus bowing occurs later. Graupel size distributions with more numerous, smaller, and lighter hydrometeors result in larger microphysical cooling rates, stronger cold pools, more intense midlevel buoyancy and pressure gradients, and earlier onset of surface-based rear inflow; these systems develop bowing segments earlier. A sensitivity test with fast-falling but small graupel hydrometeors revealed that small mean size and slow fall speed both contribute to the strong cooling rates. Simulations entirely without graupel are initially weaker, because of limited contributions from cooling by melting of the slowly falling snow. However, over the next hour increased rates of melting snow result in an increasingly more intense system with new bowing. Results of the study indicate that the development of a bow echo is highly sensitive to microphysical processes, which presents a challenge to the prediction of these severe weather phenomena.

Corresponding author address: Rebecca D. Adams-Selin, HQ Air Force Weather Agency 16th Weather Squadron, 101 Nelson Dr., Offutt AFB, NE 68113. E-mail: rebecca.selin.ctr@offutt.af.mil
Save
  • Biggerstaff, M. I., and R. A. Houze, 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze, 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50, 30913110.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and W. R. Cotton, 1988: The sensitivity of a simulated extratropical mesoscale convective system to longwave radiation and ice-phase microphysics. J. Atmos. Sci., 45, 38973910.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 10591067.

    • Search Google Scholar
    • Export Citation
  • Cohen, C., and E. W. McCaul Jr., 2006: The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Wea. Rev., 134, 25472565.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171.

    • Search Google Scholar
    • Export Citation
  • Dennis, A. S., P. L. Smith Jr., G. A. P. Peterson, and R. D. McNeil, 1971: Hailstone size distributions and equivalent radar reflectivity factors computed from hailstone momentum records. J. Appl. Meteor., 10, 7985.

    • Search Google Scholar
    • Export Citation
  • Federer, B., and A. Waldvogel, 1975: Hail and raindrop size distributions from a Swiss multicell storm. J. Appl. Meteor., 14, 9197.

  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 38463879.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 31443176.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., and A. J. Thorpe, 1992: The development of organized convection in a simplified squall-line model. Quart. J. Roy. Meteor. Soc., 118, 101124.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004a: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004b: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., 1973: The squall line thunderstorm: Numerical experimentation. J. Atmos. Sci., 30, 16721690.

  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., K. S. Sunny Lim, J. H. Kim, J. O. Jade Lim, and J. Dudhia, 2009: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteor. Climatol., 48, 6176.

    • Search Google Scholar
    • Export Citation
  • James, R. P., J. M. Fritsch, and P. M. Markowski, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134, 950963.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., W. A. Cooper, D. W. Breed, I. R. Paluch, P. L. Smith, and G. Valie, 1982: Microphysics. Hailstorms of the Central High Plains, C. Knight and P. Squires, Eds., Vol. 1, Colorado Associated University Press, 151–193.

  • Lafore, J. P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521544.

    • Search Google Scholar
    • Export Citation
  • Lerach, D. G., B. J. Gaudet, and W. R. Cotton, 2008: Idealized simulations of aerosol influences on tornadogenesis. Geophys. Res. Lett., 35, L23806, doi:10.1029/2008GL035617.

    • Search Google Scholar
    • Export Citation
  • Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. Mc K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166.

  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., 1987: A comparison of the results of a two-dimensional numerical simulation of a tropical squall line with observations. Mon. Wea. Rev., 115, 30553077.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. H. Johnson, and W. R. Cotton, 1988: The sensitivity of two-dimensional simulations of tropical squall lines to environmental profiles. J. Atmos. Sci., 45, 36253649.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., D. R. Durran, and M. L. Weisman, 2000: The influence of convective thermal forcing on the three-dimensional circulation around squall lines. J. Atmos. Sci., 57, 2945.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2010: Relationship between system slope and updraft intensity in squall lines. Mon. Wea. Rev., 138, 35723578.

  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. Part VIII: A model for the “seeder feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2013: Squall-line intensification via hydrometeor recirculation. J. Atmos. Sci., in press.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Snook, N. A., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, doi:10.1029/2008GL035866.

    • Search Google Scholar
    • Export Citation
  • Spahn, J. E., 1976: The airborne hail disdrometer: An analysis of its 1975 performance. Rep. 76-13, Institute of Atmospheric Sciences, South Dakota School of Mines and Technology, Rapid City, SD, 65 pp.

  • Stensrud, D. J., M. C. Coniglio, R. P. Davies-Jones, and J. S. Evans, 2005: Comments on “‘A theory for strong long-lived squall lines’ revisited.” J. Atmos. Sci., 62, 29892996.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 2005: Simulated equivalent reflectivity factor as currently formulated in RIP: Description and possible improvements. Read/Interpolate/Plot Implementation Document, 5 pp. [Available online at http://www.atmos.washington.edu/~stoeling/RIP_sim_ref.pdf.]

  • Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915.

    • Search Google Scholar
    • Export Citation
  • Szeto, K., and H. Cho, 1994: A numerical investigation of squall lines. Part III: Sensitivity to precipitation processes and the Coriolis force. J. Atmos. Sci., 51, 13411351.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and J. Simpson, 1989: Modeling study of a tropical squall-type convective line. J. Atmos. Sci., 46, 177202.

  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of midlatitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2010: Relationships of biomass-burning aerosols to ice in orographic wave clouds. J. Atmos. Sci., 67, 24372450.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609.

  • van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrió, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.

    • Search Google Scholar
    • Export Citation
  • van Weverberg, K., N. P. M. van Lipzig, and L. Delobbe, 2011: The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium. Mon. Wea. Rev., 139, 11311147.

    • Search Google Scholar
    • Export Citation
  • van Weverberg, K., N. P. M. van Lipzig, L. Delobbe, and A. M. Vogelmann, 2012a: The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation. Quart. J. Roy. Meteor. Soc.,138, 2163–2181.

  • van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. Milbrandt, 2012b: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe long-lived bow echoes. J. Atmos. Sci., 50, 645670.

  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382.

  • Weisman, M. L., and R. Rotunno, 2005: Reply. J. Atmos. Sci., 62, 29973002.

  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548.

    • Search Google Scholar
    • Export Citation
  • Yang, M. J., and R. A. Houze Jr., 1995: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 31753193.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 553 209 18
PDF Downloads 492 187 15