Model Bias in a Continuously Cycled Assimilation System and Its Influence on Convection-Permitting Forecasts

Glen S. Romine National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Glen S. Romine in
Current site
Google Scholar
PubMed
Close
,
Craig S. Schwartz National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Craig S. Schwartz in
Current site
Google Scholar
PubMed
Close
,
Chris Snyder National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Chris Snyder in
Current site
Google Scholar
PubMed
Close
,
Jeff L. Anderson National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Jeff L. Anderson in
Current site
Google Scholar
PubMed
Close
, and
Morris L. Weisman National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Morris L. Weisman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the spring 2011 season, a real-time continuously cycled ensemble data assimilation system using the Advanced Research version of the Weather Research and Forecasting Model (WRF) coupled with the Data Assimilation Research Testbed toolkit provided initial and boundary conditions for deterministic convection-permitting forecasts, also using WRF, over the eastern two-thirds of the conterminous United States (CONUS). In this study the authors evaluate the mesoscale assimilation system and the convection-permitting forecasts, at 15- and 3-km grid spacing, respectively. Experiments employing different physics options within the continuously cycled ensemble data assimilation system are shown to lead to differences in the mean mesoscale analysis characteristics. Convection-permitting forecasts with a fixed model configuration are initialized from these physics-varied analyses, as well as control runs from 0.5° Global Forecast System (GFS) analysis. Systematic bias in the analysis background influences the analysis fit to observations, and when this analysis initializes convection-permitting forecasts, the forecast skill is degraded as bias in the analysis background increases. Moreover, differences in mean error characteristics associated with each physical parameterization suite lead to unique errors of spatial, temporal, and intensity aspects of convection-permitting rainfall forecasts. Observation bias by platform type is also shown to impact the analysis quality.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Glen Romine, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: romine@ucar.edu

Abstract

During the spring 2011 season, a real-time continuously cycled ensemble data assimilation system using the Advanced Research version of the Weather Research and Forecasting Model (WRF) coupled with the Data Assimilation Research Testbed toolkit provided initial and boundary conditions for deterministic convection-permitting forecasts, also using WRF, over the eastern two-thirds of the conterminous United States (CONUS). In this study the authors evaluate the mesoscale assimilation system and the convection-permitting forecasts, at 15- and 3-km grid spacing, respectively. Experiments employing different physics options within the continuously cycled ensemble data assimilation system are shown to lead to differences in the mean mesoscale analysis characteristics. Convection-permitting forecasts with a fixed model configuration are initialized from these physics-varied analyses, as well as control runs from 0.5° Global Forecast System (GFS) analysis. Systematic bias in the analysis background influences the analysis fit to observations, and when this analysis initializes convection-permitting forecasts, the forecast skill is degraded as bias in the analysis background increases. Moreover, differences in mean error characteristics associated with each physical parameterization suite lead to unique errors of spatial, temporal, and intensity aspects of convection-permitting rainfall forecasts. Observation bias by platform type is also shown to impact the analysis quality.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Glen Romine, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: romine@ucar.edu
Save
  • Aksoy, A., D. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824.

    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., S. S. Weygandt, T. G. Smirnova, S. Benjamin, P. Hofmann, E. P. James, and D. A. Koch, 2010: High resolution rapid refresh (HR RR): Recent enhancements and evaluation during the 2010 convective season. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 9.2. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_175722.htm.]

  • Ancell, B. C., C. F. Mass, and G. J. Hakim, 2011: Evaluation of surface analyses and forecasts with a multiscale ensemble kalman filter in regions of complex terrain. Mon. Wea. Rev., 139, 20082024.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61, 7283.

  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 2359–2371.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Ballish, B. A., and V. Krishna Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures. Bull. Amer. Meteor. Soc., 89, 16891708.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831–843.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz, and T. W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343.

    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13.

  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056.

    • Search Google Scholar
    • Export Citation
  • Casati, B., and Coauthors, 2008: Forecast verification: Current status and future directions. Meteor. Appl., 15, 318.

  • Cavallo, S. M., R. D. Torn, C. Snyder, C. Davis, W. Wang, and J. Done, 2013: Evaluation of the Advanced Hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Wea. Rev., 141, 523541.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. Tech. Rep., NASA Tech. Memo. 104606, Vol. 3, 85 pp.

  • Clark, A. J., W. Gallus, and T. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. Gallus, and T. Chen, 2008: Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill. Mon. Wea. Rev., 136, 21402156.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 hazardous weather testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 55–74.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., 5, 110117.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2008: Fuzzy verification of high resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 5164.

    • Search Google Scholar
    • Export Citation
  • Ek, M., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., and Coauthors, 2010: The Canadian Regional Data Assimilation and Forecasting System. Wea. Forecasting, 25, 16451669.

  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135, 18461868.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1994: The stop-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541–564.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2010: Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting–research environment. Wea. Forecasting, 25, 15101521.

    • Search Google Scholar
    • Export Citation
  • Kong, F., K. K. Droegemeier, and N. L. Hickmon, 2007: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part II: Storm-scale experiments. Mon. Wea. Rev., 135, 759782.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2009: A real-time storm-scale ensemble forecast system: 2009 Spring Experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.3. [Available online at https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154118.htm.]

  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Shofield, R. P. Linfied, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102 (D19), 23 42923 465.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and K. G. Hubbard, 2004: Sensor and electronic biases/errors in air temperature measurements in common weather station networks. J. Atmos. Oceanic Technol., 21, 10251032.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Liu, C., and M. W. Moncrieff, 2007: Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations. Mon. Wea. Rev., 135, 28542868.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. S. Scwartz, C. Snyder, and S.-Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., 140, 4017–4034.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., 2005: An investigation of the ability of a storm scale configuration of the Met Office NWP model to predict flood-producing rainfall. Met Office Tech. Rep. 455, 80 pp. [Available online at http://research.metoffice.gov.uk/research/nwp/publications/papers/technical_reports/2005/FRTR455/FRTR455.pdf.]

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 2009: The NCEP North American Mesoscale modeling system: Recent changes and future plans. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 2A4. [Available online at https://ams.confex.com/ams/pdfpapers/154114.pdf.]

  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Skamarock, W. C., and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp. [Available online at www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Sobash, R., J. Kain, D. Bright, A. Dean, M. Coniglio, and S. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-Scale Warn-on-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499.

    • Search Google Scholar
    • Export Citation
  • Theis, S. E., A. Hense, and U. Damrath, 2005: Probabilistic precipitation forecasts from a deterministic model: A pragmatic approach. Meteor. Appl., 12, 257268.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 43754392.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Performance characteristics of a pseudo-operational ensemble Kalman filter. Mon. Wea. Rev., 136, 39473963.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 2188–2197.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., M. A. LeMone, F. Chen, and K. W. Manning, 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147–1170.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2008: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2008 spring experiment. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.2. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142036.htm.]

  • Xue, M., and Coauthors, 2009: CAPS realtime 4-km multi-model convection-allowing ensemble and 1-km convection-resolving forecasts for the NOAA Hazardous Weather Testbed 2009 spring experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.2. [Available online at https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154323.htm.]

  • Xue, M., and Coauthors, 2010: CAPS realtime storm scale ensemble and high resolution forecasts for the NOAA Hazardous Weather Testbed 2010 spring experiment. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 7B.3. [Available online at https://ams.confex.com/ams/25SLS/webprogram/Paper176056.html.]

  • Zhang, C., Y. Wang, and K. Hamilton, 2011a: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. Gamache, and F. D. Marks, 2011b: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett.,38,L15810, doi:10.1029/2011GL048469.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 534 240 9
PDF Downloads 266 73 7