Drop-Size Distributions in Thunderstorms Measured by Optical Disdrometers during VORTEX2

Katja Friedrich University of Colorado, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
,
Evan A. Kalina University of Colorado, Boulder, Colorado

Search for other papers by Evan A. Kalina in
Current site
Google Scholar
PubMed
Close
,
Forrest J. Masters University of Florida, Gainesville, Florida

Search for other papers by Forrest J. Masters in
Current site
Google Scholar
PubMed
Close
, and
Carlos R. Lopez University of Florida, Gainesville, Florida

Search for other papers by Carlos R. Lopez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

When studying the influence of microphysics on the near-surface buoyancy tendency in convective thunderstorms, in situ measurements of microphysics near the surface are essential and those are currently not provided by most weather radars. In this study, the deployment of mobile microphysical probes in convective thunderstorms during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) is examined. Microphysical probes consist of an optical Ott Particle Size and Velocity (PARSIVEL) disdrometer that measures particle size and fall velocity distributions and a surface observation station that measures wind, temperature, and humidity. The mobile probe deployment allows for targeted observations within various areas of the storm and coordinated observations with ground-based mobile radars. Quality control schemes necessary for providing reliable observations in severe environments with strong winds and high rainfall rates and particle discrimination schemes for distinguishing between hail, rain, and graupel are discussed. It is demonstrated how raindrop-size distributions for selected cases can be applied to study size-sorting and microphysical processes. The study revealed that the raindrop-size distribution changes rapidly in time and space in convective thunderstorms. Graupel, hailstones, and large raindrops were primarily observed close to the updraft region of thunderstorms in the forward- and rear-flank downdrafts and in the reflectivity hook appendage. Close to the updraft, large raindrops were usually accompanied by an increase in small-sized raindrops, which mainly occurred when the wind speed and standard deviation of the wind speed increased. This increase in small drops could be an indicator of raindrop breakup.

Corresponding author address: Dr. Katja Friedrich, ATOC, University of Colorado, UCB 311, Boulder, CO 80309-0311. E-mail: katja.friedrich@colorado.edu

Abstract

When studying the influence of microphysics on the near-surface buoyancy tendency in convective thunderstorms, in situ measurements of microphysics near the surface are essential and those are currently not provided by most weather radars. In this study, the deployment of mobile microphysical probes in convective thunderstorms during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) is examined. Microphysical probes consist of an optical Ott Particle Size and Velocity (PARSIVEL) disdrometer that measures particle size and fall velocity distributions and a surface observation station that measures wind, temperature, and humidity. The mobile probe deployment allows for targeted observations within various areas of the storm and coordinated observations with ground-based mobile radars. Quality control schemes necessary for providing reliable observations in severe environments with strong winds and high rainfall rates and particle discrimination schemes for distinguishing between hail, rain, and graupel are discussed. It is demonstrated how raindrop-size distributions for selected cases can be applied to study size-sorting and microphysical processes. The study revealed that the raindrop-size distribution changes rapidly in time and space in convective thunderstorms. Graupel, hailstones, and large raindrops were primarily observed close to the updraft region of thunderstorms in the forward- and rear-flank downdrafts and in the reflectivity hook appendage. Close to the updraft, large raindrops were usually accompanied by an increase in small-sized raindrops, which mainly occurred when the wind speed and standard deviation of the wind speed increased. This increase in small drops could be an indicator of raindrop breakup.

Corresponding author address: Dr. Katja Friedrich, ATOC, University of Colorado, UCB 311, Boulder, CO 80309-0311. E-mail: katja.friedrich@colorado.edu
Save
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys.,11, 1–35.

  • Barthazy, E., S. Goeke, R. Schefold, and D. Hoegl, 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21, 333344.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 14001416.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., and A. T. Spencer, 1970: Experiments on the generation of raindrop-size distributions by drop breakup. J. Atmos. Sci., 27, 101108.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. L. Pazmany, 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543.

    • Search Google Scholar
    • Export Citation
  • Bradley, S. G., and C. D. Stow, 1975: Reply. J. Appl. Meteor., 14, 426428.

  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., D. A. Burrows, and S. M. Menon, 1991: Multiparameter radar and aircraft study of raindrop spectral evolution in warm-based clouds. J. Appl. Meteor., 30, 853880.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., L. Liu, P. C. Kennedy, V. Chandrasekar, and S. A. Rutledge, 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys., 59, 331.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1965: The evolution of tornadic storms. J. Atmos. Sci., 22, 664668.

  • Browning, K. A., and R. J. Donaldson Jr., 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20, 533545.

  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255.

    • Search Google Scholar
    • Export Citation
  • Caracciolo, C., F. Rodi, and R. Uijlenhoet, 2006: Comparison between Pludix and impact/optical disdrometers during rainfall measurement campaigns. Atmos. Res., 82, 137163.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, G., 1982: Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes. J. Rech. Atmos., 16, 3545.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 10011033.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 38463879.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci.,55, 3283–3298.

  • Griffiths, R. F., 1975: Comments on “The measurement of charge and size of raindrops: Parts I and II.” J. Appl. Meteor., 14, 422425.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248.

  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140.

    • Search Google Scholar
    • Export Citation
  • Hodson, M. C., 1986: Raindrop size distribution. J. Climate Appl. Meteor.,25, 1070–1074.

  • Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric measurements from a severe hailstorm in eastern Colorado. J. Appl. Meteor., 37, 749755.

    • Search Google Scholar
    • Export Citation
  • Huschke, R. E., 1959: Glossary of Meteorology. Amer. Meteor. Soc., 638 pp.

  • Illingworth, A. J., and C. J. Stevens, 1987: An optical disdrometer for the measurement of raindrop size spectra in windy conditions. J. Atmos. Oceanic Technol., 4, 411421.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and A. Berne, 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor., 12, 352370.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 1995: Dual-Doppler and multiparameter radar observations of a bow-echo hailstorm. Mon. Wea. Rev., 123, 921943.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516.

  • Kobayashi, T., and A. Adachi, 2001: Measurements of raindrop breakup by using UHF wind profilers. Geophys. Res. Lett.,28, 4071–4074.

  • Krajewski, W. F., and Coauthors, 2006: DEVEX—Disdrometer Evaluation Experiment: Basic results and implications for hydrologic studies. Adv. Water Resour., 29, 311325.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617.

  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor.,22, 1065–1092.

  • List, R., and J. R. Gillespie, 1976: Evolution of raindrop spectra with collision-induced breakup. J. Atmos. Sci., 33, 20072013.

  • Liu, C., M. W. Moncrieff, and E. J. Zipser, 1997: Dynamical influence of microphysics in tropical squall lines: A numerical study. Mon. Wea. Rev., 125, 21932210.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197.

  • Loeffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139.

    • Search Google Scholar
    • Export Citation
  • Loeffler-Mang, M., and U. Blahak, 2001: Estimation of the equivalent radar reflectivity factor from measured snow size spectra. J. Appl. Meteor., 40, 843849.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 11791194.

    • Search Google Scholar
    • Export Citation
  • Lopez, C. R., F. J. Masters, and K. Friedrich, 2011: Capture and characterization of wind-driven rain during tropical cyclones and supercell thunderstorms. 13th Int. Conf. on Wind Engineering, Amsterdam, The Netherlands, International Association for Wind Engineering.

  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 2887–2915.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 9851004.

    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., and V. Chandrasekar, 2007: Examination of the μ–Λ relation suggested for drop size distribution parameters. J. Atmos. Oceanic Technol., 24, 847855.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Musil, D. J., W. R. Sand, and R. A. Schleusener, 1973: Analysis of data from T-28 aircraft penetrations of a Colorado hailstorm. J. Appl. Meteor., 12, 13641370.

    • Search Google Scholar
    • Export Citation
  • Nespor, V., W. F. Krajewski, and A. Kruger, 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17, 14831492.

    • Search Google Scholar
    • Export Citation
  • Pasqualucci, F., 1982: The variation in drop size distribution in convective storms: A comparison between theory and measurement. Geophys. Res. Lett., 9, 839841.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., K. V. Beard, and B. M. Andrews, 1991: A mechanism for giant raindrop formation in warm, shallow convective clouds. J. Atmos. Sci., 48, 17911797.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc.,124, 1071–1107.

  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci.,41, 2949–2972.

  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570.

  • Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52, 10701083.

  • Schlatter, P. T., 2003: Polarimetric radar and in-situ measurements of a nontornadic supercell. M.S. thesis, School of Meteorology, University of Oklahoma, 97 pp.

  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnic, and M. Schoenhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983994.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1982: Methods of correction for systematic error in point precipitation measurement for operational use. Operational Hydrological Rep. 21, WMO Rep. 589, 91 pp.

  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441.

    • Search Google Scholar
    • Export Citation
  • Shiotsuki, Y., 1976: An estimation of drop-size distribution in the severe rainfall. J. Meteor. Soc. Japan, 54, 259263.

  • Smyth, T. J., and A. J. Illingworth, 1998: Correction for attenuation of radar reflectivity using polarization data. Quart. J. Roy. Meteor. Soc., 124, 23932415.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., J. A. Smith, and R. Uilenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61, 11141131.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs, and K. V. Beard, 1998: The microphysical structure and evolution of Hawaiian rainband clouds. Part II: Aircraft measurements within rainbands containing high reflectivity cores. J. Atmos. Sci., 55, 208226.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Ruthledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev.,136, 5095–5115.

  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978.

  • Thurai, M., V. N. Bringi, and P. T. May, 2010a: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., W. A. Petersen, and L. D. Carey, 2010b: DSD characteristics of cool-season tornadic storm using C-band polarimetric radar and two 2D-video disdrometers. Proc. Sixth Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, EUMETSAT. [Available online at http://www.erad2010.org/pdf/oral/tuesday/radpol1/5_ERAD2010_0101.pdf.]

  • Thurai, M., W. A. Petersen, A. Tokay, C. Schultz, and P. Gatlin, 2011: Drop size distribution comparisons between PARSIVEL and 2-D video disdrometers. Adv. Geosci., 30, 39.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and K. V. Beard, 1996: A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes. J. Appl. Meteor., 35, 16711687.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., J. A. Smith, and M. Steiner, 2003a: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60, 12201238.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003b: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., J. M. Straka, and E. N. Rasmussen, 2008: Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic Southern Plains supercells. J. Appl. Meteor. Climatol., 47, 12321247.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 10671078.

  • Willis, P. T., and P. Tattelman, 1989: Drop-size distributions associated with intense rainfall. J. Appl. Meteor., 28, 315.

  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147–1170.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Loeffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., and M. de Agostinho Antonio, 1988: Equilibrium raindrop size distributions in tropical rain. J. Atmos. Sci., 45, 34523459.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. F., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 11061119.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1200 483 68
PDF Downloads 817 338 43