A Multimoment Constrained Finite-Volume Model for Nonhydrostatic Atmospheric Dynamics

Xingliang Li State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and Center of Numerical Weather Prediction, China Meteorological Administration, Beijing, China

Search for other papers by Xingliang Li in
Current site
Google Scholar
PubMed
Close
,
Chungang Chen School of Human Settlement and Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Chungang Chen in
Current site
Google Scholar
PubMed
Close
,
Xueshun Shen State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and Center of Numerical Weather Prediction, China Meteorological Administration, Beijing, China

Search for other papers by Xueshun Shen in
Current site
Google Scholar
PubMed
Close
, and
Feng Xiao Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan

Search for other papers by Feng Xiao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The two-dimensional nonhydrostatic compressible dynamical core for the atmosphere has been developed by using a new nodal-type high-order conservative method, the so-called multimoment constrained finite-volume (MCV) method. Different from the conventional finite-volume method, the predicted variables (unknowns) in an MCV scheme are the values at the solution points distributed within each mesh cell. The time evolution equations to update the unknown point values are derived from a set of constraint conditions based on the multimoment concept, where the constraint on the volume-integrated average (VIA) for each mesh cell is cast into a flux form and thus guarantees rigorously the numerical conservation. Two important features make the MCV method particularly attractive as an accurate and practical numerical framework for atmospheric and oceanic modeling. 1) The predicted variables are the nodal values at the solution points that can be flexibly located within a mesh cell (equidistant solution points are used in the present model). It is computationally efficient and provides great convenience in dealing with complex geometry and source terms. 2) High-order and physically consistent formulations can be built by choosing proper constraints in view of not only numerical accuracy and efficiency but also underlying physics. In this paper the authors present a dynamical core that uses the third- and the fourth-order MCV schemes. They have verified the numerical outputs of both schemes by widely used standard benchmark tests and obtained competitive results. The present numerical core provides a promising and practical framework for further development of nonhydrostatic compressible atmospheric models.

Corresponding author address: Xingliang Li, Center of Numerical Weather Prediction, China Meteorological Administration, 46 Zhongguancun South St., Beijing 100081, China. E-mail: lixl@cams.cma.gov.cn

Abstract

The two-dimensional nonhydrostatic compressible dynamical core for the atmosphere has been developed by using a new nodal-type high-order conservative method, the so-called multimoment constrained finite-volume (MCV) method. Different from the conventional finite-volume method, the predicted variables (unknowns) in an MCV scheme are the values at the solution points distributed within each mesh cell. The time evolution equations to update the unknown point values are derived from a set of constraint conditions based on the multimoment concept, where the constraint on the volume-integrated average (VIA) for each mesh cell is cast into a flux form and thus guarantees rigorously the numerical conservation. Two important features make the MCV method particularly attractive as an accurate and practical numerical framework for atmospheric and oceanic modeling. 1) The predicted variables are the nodal values at the solution points that can be flexibly located within a mesh cell (equidistant solution points are used in the present model). It is computationally efficient and provides great convenience in dealing with complex geometry and source terms. 2) High-order and physically consistent formulations can be built by choosing proper constraints in view of not only numerical accuracy and efficiency but also underlying physics. In this paper the authors present a dynamical core that uses the third- and the fourth-order MCV schemes. They have verified the numerical outputs of both schemes by widely used standard benchmark tests and obtained competitive results. The present numerical core provides a promising and practical framework for further development of nonhydrostatic compressible atmospheric models.

Corresponding author address: Xingliang Li, Center of Numerical Weather Prediction, China Meteorological Administration, 46 Zhongguancun South St., Beijing 100081, China. E-mail: lixl@cams.cma.gov.cn
Save
  • Ahmad, N., and J. Lindeman, 2007: Euler solutions using flux-based wave decomposition. Int. J. Numer. Methods Fluids, 54, 47–72.

  • Benoit, R., M. Desgagne, P. Pellerin, S. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125, 2382–2415.

    • Search Google Scholar
    • Export Citation
  • Blaise, S., and A. St-Cyr, 2012: A dynamic HP-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation. Mon. Wea. Rev., 140, 978–996.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, P. R. Woodward, and C. E. Hane, 1990: Application of the piecewise parabolic method (ppm) to meteorological modeling. Mon. Wea. Rev., 118, 586–612.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and F. Xiao, 2008: Shallow water model on spherical-cubic grid by multi-moment finite volume method. J. Comput. Phys., 227, 5019–5044.

    • Search Google Scholar
    • Export Citation
  • Chen, C., J. Z. Bin, and F. Xiao, 2012: A global multimoment constrained finite-volume scheme for advection transport on hexagonal geodesic grid. Mon. Wea. Rev., 140, 941–955.

    • Search Google Scholar
    • Export Citation
  • Chen, D. H., and Coauthors, 2008: New generation of multi-scale NWP system (grapes): General scientific design. Chin. Sci. Bull., 53, 3433–3445.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1977: A small-scale dynamics model using a terrain-following coordinate transformation. J. Comput. Phys., 24, 186–215.

    • Search Google Scholar
    • Export Citation
  • Cockburn, B., and C. Shu, 1989: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework. Math. Comput., 52, 411–435.

    • Search Google Scholar
    • Export Citation
  • Cockburn, B., and C. Shu, 1998: The local discontinuous Galerkin method for time dependent convection–diffusion systems. SIAM J. Numer. Anal., 35, 2440–2463.

    • Search Google Scholar
    • Export Citation
  • Dennis, J., A. Fournier, W. Spotz, A. St-Cyr, M. Taylor, S. Thomas, and H. Tufo, 2005: High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perform. Comput. Appl., 19, 225–235.

    • Search Google Scholar
    • Export Citation
  • Dennis, J., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the community atmosphere model. Int. J. High Perform. Comput. Appl., 26, 74–89.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and U. Schattler, 1999: The nonhydrostatic limited-area model LM (lokal modell) of DWD. Part I. Scientific documentation. Deutscher Wetterdienst Rep. LM F90 1.35, Deutscher Wetterdienst (DWD), Offenbach, Germany, 172 pp.

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold fron. Mon. Wea. Rev., 121, 1493–1513.

    • Search Google Scholar
    • Export Citation
  • Dumbser, M., D. Balsara, E. Toro, and C. Munz, 2008: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys., 227, 8209–8253.

    • Search Google Scholar
    • Export Citation
  • Durran, D., and J. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 2341–2361.

  • Fournier, A., M. Taylor, and J. Tribbia, 2004: The Spectral Element Atmosphere Model (SEAM): High-resolution parallel computation and localized resolution of regional dynamics. Mon. Wea. Rev., 132, 726–748.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys., 17, 209–228.

    • Search Google Scholar
    • Export Citation
  • Gassmann, A., 2011: Non-hydrostatic modelling with ICON. Proc. ECMWF Workshop on Nonhydrostatic Modelling, Reading, United Kingdom, ECMWF, 131–142.

  • Giraldo, F., and T. Rosmond, 2004: A scalable spectral element eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests. Mon. Wea. Rev., 132, 133–153.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F., and M. Restelli, 2008: A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys., 227, 3849–3877.

    • Search Google Scholar
    • Export Citation
  • Hesthaven, J., and T. Warburton, 2008: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications. Springer, 500 pp.

  • Hodur, R., 1997: The Naval Research Laboratory Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 1414–1430.

    • Search Google Scholar
    • Export Citation
  • Ii, S., and F. Xiao, 2007: CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic formulation. J. Comput. Phys., 222, 849–871.

    • Search Google Scholar
    • Export Citation
  • Ii, S., and F. Xiao, 2009: High order multi-moment constrained finite volume method. Part I: Basic formulation. J. Comput. Phys., 228, 3668–3707.

    • Search Google Scholar
    • Export Citation
  • Ii, S., and F. Xiao, 2010: Global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid. J. Comput. Phys., 229, 1774–1796.

    • Search Google Scholar
    • Export Citation
  • Ii, S., M. Shimuta, and F. Xiao, 2005: A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments. Comput. Phys. Commun., 173, 17–33.

    • Search Google Scholar
    • Export Citation
  • Iskandarani, M., D. Haidvogel, J. Levin, E. Curchitser, and C. Edwards, 2002: Multiscale geophysical modeling using the spectral element method. Comput. Sci. Eng., 4, 42–48.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 2163–2169.

  • Klemp, J. B., W. C. Skamarock, and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131, 1229–1239.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 2897–2913.

    • Search Google Scholar
    • Export Citation
  • Levy, M. N., R. Nair, and H. M. Tufo, 2007: High-order Galerkin methods for scalable global atmospheric models. Comput. Geosci., 33, 1022–1035.

    • Search Google Scholar
    • Export Citation
  • Li, X., D. Chen, X. Peng, K. Takahashi, and F. Xiao, 2008: A multimoment finite-volume shallow-water model on the Yin–Yang overset spherical grid. Mon. Wea. Rev., 136, 3066–3086.

    • Search Google Scholar
    • Export Citation
  • Li, X., X. S. Shen, X. D. Peng, F. Xiao, Z. R. Zhuang, and C. G. Chen, 2012: Fourth order transport model on Yin–Yang grid by multi-moment constrained finite volume scheme. Proc. Comput. Sci., 9, 1004–1013.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., H. W. Choi, and H. M. Tufo, 2009: Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Comput. Fluids, 38, 309–319.

    • Search Google Scholar
    • Export Citation
  • Norman, M. R., R. D. Nair, and F. H. Semazzi, 2011: A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics. J. Comput. Phys., 230, 1567–1584.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed sphere grids. J. Comput. Phys., 227, 55–78.

  • Restelli, M., and F. Giraldo, 2009: A conservative semi-implicit discontinuous Galerkin method for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling. SIAM J. Sci. Comput., 31, 2231–2257.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 3486–3514.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 2459–2480.

    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 1988: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput., 9, 1073–1084.

  • Shu, C.-W., and S. Osher, 1988: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77, 439–471.

    • Search Google Scholar
    • Export Citation
  • Simmaro, J., and M. Hortal, 2012: A semi-implicit non-hydrostatic dynamical kernel using finite elements in the vertical discretization. Quart. J. Roy. Meteor. Soc., 138, 826–839.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and J. Klemp, 1994: Efficiency and accuracy of the Klemp–Wilhelmson time-splitting technique. Mon. Wea. Rev., 122, 2623–2630.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and J. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485.

    • Search Google Scholar
    • Export Citation
  • Smith, R., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smith, R., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348–364.

  • Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 1–22.

    • Search Google Scholar
    • Export Citation
  • Taylor, M., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 5879–5895.

    • Search Google Scholar
    • Export Citation
  • Thomas, S., and R. Loft, 2000: Parallel semi-implicit spectral element methods for atmospheric general circulation models. J. Sci. Comput., 15, 499–518.

    • Search Google Scholar
    • Export Citation
  • Titarev, V. A., and E. F. Toro, 2002: ADER: Arbitrary high order Godunov approach. J. Sci. Comput., 17, 609–618.

  • Toro, E. F., R. C. Millington, and L. A. M. Nejad, 2001: Towards very high order Godunov schemes. Godunov Methods: Theory and Applications, E. F. Toro, Ed., Kluwer Academic, 907–940.

  • Ullrich, P., and C. Jablonowski, 2012a: MCORE: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods. J. Comput. Phys., 231, 5078–5108.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P., and C. Jablonowski, 2012b: Operator-split Runge–Kutta–Rosenbrock methods for nonhydrostatic atmospheric models. Mon. Wea. Rev., 140, 1257–1284.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2008: The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and tests of the nonhydrostatic dynamic core. Mon. Wea. Rev., 136, 4045–4062.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2002: Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation. J. Comput. Phys., 178, 210–251.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126, 1992–1999.

    • Search Google Scholar
    • Export Citation
  • Xiao, F., 2004: Unified formulation for compressible and incompressible flows by using multi-integrated moment method: One-dimensional inviscid compressible flow. J. Comput. Phys., 195, 629–654.

    • Search Google Scholar
    • Export Citation
  • Xiao, F., and S. Ii, 2007: CIP/Multi-moment finite volume method with arbitrary order of accuracy. Proc. 12th Computational Engineering Conf., Vol. 12, Tokyo, Japan, Japan Society for Computational Engineering and Science, 409–415. [Available online at http://arxiv.org/abs/1207.6822.]

  • Xiao, F., R. Akoh, and S. Ii, 2006: Unified formulation for compressible and incompressible flows by using multi-integrated moments. II: Multi-dimensional version for compressible and incompressible flows. J. Comput. Phys., 213, 31–56.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161–193.

    • Search Google Scholar
    • Export Citation
  • Yabe, T., and T. Aoki, 1991: A universal solver for hyperbolic-equations by cubic-polynomial interpolation. 1. One-dimensional solver. Comput. Phys. Commun., 66, 219–232.

    • Search Google Scholar
    • Export Citation
  • Yabe, T., F. Xiao, and T. Utsumi, 2001: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys., 169, 556–593.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and C. W. Shu, 2005: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids, 34, 581–592.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 167 6
PDF Downloads 224 79 7