Total Lightning Characteristics Relative to Radar and Satellite Observations of Oklahoma Mesoscale Convective Systems

Jeffrey A. Makowski School of Meteorology, University of Oklahoma, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jeffrey A. Makowski in
Current site
Google Scholar
PubMed
Close
,
Donald R. MacGorman NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Donald R. MacGorman in
Current site
Google Scholar
PubMed
Close
,
Michael I. Biggerstaff School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael I. Biggerstaff in
Current site
Google Scholar
PubMed
Close
, and
William H. Beasley School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by William H. Beasley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The advent of regional very high frequency (VHF) Lightning Mapping Arrays (LMAs) makes it possible to begin analyzing trends in total lightning characteristics in ensembles of mesoscale convective systems (MCSs). Flash initiations observed by the Oklahoma LMA and ground strikes observed by the National Lightning Detection Network were surveyed relative to infrared satellite and base-scan radar reflectivity imagery for 30 mesoscale convective systems occurring over a 7-yr period. Total lightning data were available for only part of the life cycle of most MCSs, but well-defined peaks in flash rates were usually observed for MCSs having longer periods of data. The mean of the maximum 10-min flash rates for the ensemble of MCSs was 203 min−1 for total flashes and 41 min−1 for cloud-to-ground flashes (CGs). In total, 21% of flashes were CGs and 13% of CGs lowered positive charge to ground. MCSs with the largest maximum flash rates entered Oklahoma in the evening before midnight. All three MCSs entering Oklahoma in early morning after sunrise had among the smallest maximum flash rates. Flash initiations were concentrated in or near regions of larger reflectivity and colder cloud tops. The CG flash rates and total flash rates frequently evolved similarly, although the fraction of flashes striking ground usually increased as an MCS decayed. Total flash rates tended to peak approximately 90 min before the maximum area of the −52°C cloud shield, but closer in time to the maximum area of colder cloud shields. MCSs whose −52°C cloud shield grew faster tended to have larger flash rates.

Corresponding author address: Donald R. MacGorman, NOAA/National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: don.macgorman@noaa.gov

Abstract

The advent of regional very high frequency (VHF) Lightning Mapping Arrays (LMAs) makes it possible to begin analyzing trends in total lightning characteristics in ensembles of mesoscale convective systems (MCSs). Flash initiations observed by the Oklahoma LMA and ground strikes observed by the National Lightning Detection Network were surveyed relative to infrared satellite and base-scan radar reflectivity imagery for 30 mesoscale convective systems occurring over a 7-yr period. Total lightning data were available for only part of the life cycle of most MCSs, but well-defined peaks in flash rates were usually observed for MCSs having longer periods of data. The mean of the maximum 10-min flash rates for the ensemble of MCSs was 203 min−1 for total flashes and 41 min−1 for cloud-to-ground flashes (CGs). In total, 21% of flashes were CGs and 13% of CGs lowered positive charge to ground. MCSs with the largest maximum flash rates entered Oklahoma in the evening before midnight. All three MCSs entering Oklahoma in early morning after sunrise had among the smallest maximum flash rates. Flash initiations were concentrated in or near regions of larger reflectivity and colder cloud tops. The CG flash rates and total flash rates frequently evolved similarly, although the fraction of flashes striking ground usually increased as an MCS decayed. Total flash rates tended to peak approximately 90 min before the maximum area of the −52°C cloud shield, but closer in time to the maximum area of colder cloud shields. MCSs whose −52°C cloud shield grew faster tended to have larger flash rates.

Corresponding author address: Donald R. MacGorman, NOAA/National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: don.macgorman@noaa.gov
Save
  • Ansari, S., C. Hutchins, S. Del Greco, N. Stroumentova, and M. Phillips, 2009: The weather and climate toolkit. Preprints, 25th Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 6A.4. [Available online at https://ams.confex.com/ams/89annual/techprogram/paper_146485.htm.]

  • Arndt, D. S., J. B. Basara, R. A. McPherson, B. G. Illston, G. D. McManus, and D. B. Demko, 2009: Observations of the overland reintensification of Tropical Storm Erin (2007). Bull. Amer. Meteor. Soc., 90, 10791093.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and K. M. Buffalo, 2007: Environmental control of cloud-to-ground lightning polarity in severe storms. Mon. Wea. Rev.,135, 1327–1353.

  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Cohen, A., 2008: Flash rate, electrical, microphysical, and kinematic relationships across a simulated storm spectrum. M.S. thesis, School of Meteorology, University of Oklahoma, Norman, OK, 71 pp.

  • Cotton, W. R., 1999: An overview of mesoscale convective systems. Storms, R. Pielke Jr. and R. Pielke Sr., Eds., Vol. 2, Routledge, 3–25.

  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromag. Compat., 51, 499518.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 (D8), 90359044.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res.,113, D16210, doi:10.1029/2007JD009598.

  • Dotzek, N., R. M. Rabin, L. D. Carey, D. R. MacGorman, T. L. McCormick, N. W. Demetriades, M. J. Murphy, and R. L. Holle, 2005: Lightning activity related to satellite and radar observations of a mesoscale convective system over Texas on 7–8 April 2002. Atmos. Res., 76, 127166.

    • Search Google Scholar
    • Export Citation
  • Ely, B. L., R. E. Orville, L. D. Carey, and C. L. Hodapp, 2008: Evolution of the total lightning structure in a leading-line, trailing-stratiform mesoscale convective system over Houston, Texas. J. Geophys. Res., 113, D08114, doi:10.1029/2007JD008445.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the Relative Diffusional Growth Rate theory of thunderstorm electrification. Atmos. Res., 98, 327340, doi:10.1016/j.atmosres.2010.07.011.

    • Search Google Scholar
    • Export Citation
  • Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and W.-M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the central Great Plains. Atmos. Res., 91, 333352, doi:10.1016/j.atmosres.2008.08.011.

    • Search Google Scholar
    • Export Citation
  • Fuquay, D. M., 1982: Positive cloud-to-ground lightning in summer thunderstorms. J. Geophys. Res., 87 (C9), 71317140.

  • Goodman, S. J., and D. R. MacGorman, 1986: Cloud-to-ground lightning activity in mesoscale convective complexes. Mon. Wea. Rev., 114, 23202328.

    • Search Google Scholar
    • Export Citation
  • Hodapp, C. L., L. D. Carey, and R. E. Orville, 2008: Evolution of radar reflectivity and total lightning characteristics of the 21 April 2006 mesoscale convective system over Texas. Atmos. Res., 89, 113137, doi:10.1016/j.atmosres.2008.01.007.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., A. I. Watson, R. E. Lopez, D. R. MacGorman, R. Ortiz, and W. D. Otto, 1994: The life cycle of lightning and severe weather in a 3–4 June 1985 PRE-STORM mesoscale convective system. Mon. Wea. Rev., 122, 17981808.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654.

    • Search Google Scholar
    • Export Citation
  • Hunter, S. M., T. J. Schuur, T. C. Marshall, and W. D. Rust, 1992: Electric and kinematic structure of the Oklahoma mesoscale convective system of 7 June 1989. Mon. Wea. Rev., 120, 22262239.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. V., and E. R. Mansell, 2006: Three dimensional lightning mapping of the central Oklahoma supercell on 26 May 2004. Preprints, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.5. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_104352.htm.]

  • Knapp, D. I., 1994: Using cloud-to-ground lightning data to identify tornadic thunderstorm signatures and nowcast severe weather. Natl. Wea. Assoc. Dig., 19, 3542.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2008: Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res., 113, D08213, doi:10.1029/2006JD007709.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, J. E. Dye, M. Venticinque, P. Laroche, and E. Defer, 2000: Anomalously low negative cloud-to-ground lightning flash rates in intense convective storms observed during STERAO-A. Mon. Wea. Rev., 128, 160173.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, and K. C. Wiens, 2004: Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophys. Res. Lett., 31, L10105, doi:10.1029/2004GL019823.

    • Search Google Scholar
    • Export Citation
  • Lund, N. R., D. R. MacGorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 41514170.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and C. D. Morgenstern, 1998: Some characteristics of cloud-to-ground lightning in mesoscale convective systems. J. Geophys. Res., 103 (D12), 14 01114 023.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221250.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., W. D. Rust, P. Krehbiel, W. Rison, E. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133, 25832607.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., I. R. Apostolakopoulos, N. R. Lund, N. W. S. Demetriades, M. J. Murphy, and P. R. Krehbiel, 2011: The timing of cloud-to-ground lightning relative to total lightning activity. Mon. Wea. Rev., 139, 38713886.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387.

  • Mitzeva, R., C. Saunders, and B. Tsenova, 2006: Parameterisation of non-inductive charging in thunderstorm regions free of cloud droplets. Atmos. Res., 82, 102111, doi:10.1016/j.atmosres.2005.12.006.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, C. D., 1991: Cloud-to-ground lightning characteristics in mesoscale convective systems, April-September 1986. M.S. thesis, School of Meteorology, University of Oklahoma, Norman, OK, 109 pp.

  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., S. A. Rutledge, and R. H. Johnson, 2001: Cloud-to-ground lightning in linear mesoscale convective systems. Mon. Wea. Rev., 129, 12321242.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in New Mexico. Geophys. Res. Lett., 26 (23), 35733576.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., W. L. Taylor, D. R. MacGorman, and R. T. Arnold, 1981: Research on electrical properties of severe thunderstorms in the Great Plains. Bull. Amer. Meteor. Soc., 62, 12861293.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and D. R. MacGorman, 1988: Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma-Kansas PRE-STORM project. Mon. Wea. Rev., 116, 13931408.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., C. Lu, and D. R. MacGorman, 1990: Positive cloud-to-ground lightning in mesoscale convective systems. J. Atmos. Sci., 47, 20852100.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, C. Emersic, E. E. Avila, and N. E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 26532673.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., and S. A. Rutledge, 2000: Electrification of stratiform regions in mesoscale convective systems. Part II: Two-dimensional numerical model simulations of a symmetric MCS. J. Atmos. Sci., 57, 19832006.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. R., W. D. Rust, and T. C. Marshall, 1996: Electric fields and charges near 0°C in stratiform clouds. Mon. Wea. Rev., 124, 919938.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., T. C. Marshall, W. D. Rust, and B. F. Smull, 1994: Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system. Mon. Wea. Rev., 122, 17771797.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and K. Miyawaki, 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025.

  • Tessendorf, S. A., S. A. Rutledge, and K. C. Wiens, 2007: Radar and lightning observations of normal and inverted polarity storms from STEPS. Mon. Wea. Rev., 135, 36823706.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., P. R. Krehbiel, W. Rison, S. Hunyady, W. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., and C. B. Moore, 1957: Electrical activity associated with the Blackwell-Udall tornado. J. Meteor., 14, 284285.

  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 20 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 527–561.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 418 159 18
PDF Downloads 333 75 10