Prediction and Diagnosis of the Motion and Rapid Intensification of Typhoon Sinlaku during Tropical Cyclone Structure Experiment 2008 (TCS08)

Marie-Dominique Leroux Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia, and Laboratoire de l’Atmosphère et des Cyclones, Unité mixte CNRS–Météo-France–Université de La Réunion, La Réunion, France

Search for other papers by Marie-Dominique Leroux in
Current site
Google Scholar
PubMed
Close
,
Noel E. Davidson Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia

Search for other papers by Noel E. Davidson in
Current site
Google Scholar
PubMed
Close
,
Yimin Ma Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia

Search for other papers by Yimin Ma in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey D. Kepert Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia

Search for other papers by Jeffrey D. Kepert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of initial structure on storm evolution is examined for the case of a tropical storm entering rapid intensification. At the onset of rapid intensification, satellite cloud signatures suggest that the structural organization of Typhoon Sinlaku (2008) was dominated by a primary band of convection present at outer radii. The development of the eyewall subsequently occurred within this band of deep convection.

Numerical forecasts of Sinlaku are initialized at 15- and 5-km resolution using a broad range of vortex scales, at a time when the storm was still weak and its structure not clearly defined. Evidence is presented that beta propagation played a key role in changing the storm’s motion under weak environmental steering. It is found that the track forecast improves over the period when beta propagation is prominent if the vortex is initialized with a large radius of maximum wind (RMW), corresponding with the primary outer cloud band. The initial vortex structure is also suggested to play a critical role in the pathway to rapid intensification, and in the formation of the eyewall for the defined environmental forcing. With an initially large RMW, the forecast captures the evolution of structure and intensity more skillfully. Eyewall formation inside the primary outer convective band for the weak storm is illustrated and some possible dynamical interpretations are discussed.

Corresponding author address: Marie-Dominique Leroux, Météo-France DIRRE, Cellule Recherche Cyclones, BP4, 97491 Ste Clotilde, La Réunion, France. E-mail: marie-dominique.leroux@meteo.fr

Abstract

The impact of initial structure on storm evolution is examined for the case of a tropical storm entering rapid intensification. At the onset of rapid intensification, satellite cloud signatures suggest that the structural organization of Typhoon Sinlaku (2008) was dominated by a primary band of convection present at outer radii. The development of the eyewall subsequently occurred within this band of deep convection.

Numerical forecasts of Sinlaku are initialized at 15- and 5-km resolution using a broad range of vortex scales, at a time when the storm was still weak and its structure not clearly defined. Evidence is presented that beta propagation played a key role in changing the storm’s motion under weak environmental steering. It is found that the track forecast improves over the period when beta propagation is prominent if the vortex is initialized with a large radius of maximum wind (RMW), corresponding with the primary outer cloud band. The initial vortex structure is also suggested to play a critical role in the pathway to rapid intensification, and in the formation of the eyewall for the defined environmental forcing. With an initially large RMW, the forecast captures the evolution of structure and intensity more skillfully. Eyewall formation inside the primary outer convective band for the weak storm is illustrated and some possible dynamical interpretations are discussed.

Corresponding author address: Marie-Dominique Leroux, Météo-France DIRRE, Cellule Recherche Cyclones, BP4, 97491 Ste Clotilde, La Réunion, France. E-mail: marie-dominique.leroux@meteo.fr
Save
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703724.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensity forecasts using the GFDL Initialization System. Mon. Wea. Rev., 121, 20462061.

    • Search Google Scholar
    • Export Citation
  • Cao, Y., R. G. Fovell, and K. L. Corbosiero, 2011: Tropical cyclone track and structure sensitivity to initialization in idealized simulations: A preliminary study. Terr. Atmos. Oceanic Sci., 22, 559578.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 1992: Analytical tropical cyclone asymmetric circulation for barotropic model initial conditions. Mon. Wea. Rev., 120, 644652.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 1997: Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting. Mon. Wea. Rev., 125, 31903209.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C.-L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, M.-C. Yen, and A. J. Clark, 2008: Are tropical cyclones less effectively formed by easterly waves in the western North Pacific than in the North Atlantic? Mon. Wea. Rev., 136, 45274540.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., and H. C. Weber, 2000: The BMRC High-Resolution Tropical Cyclone Prediction System: TC-LAPS. Mon. Wea. Rev., 128, 12451265.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., and Y. Ma, 2012: Surface pressure profiles, vortex structure and initialization for hurricane prediction. Part II: Numerical simulations of track, structure and intensity. Meteor. Atmos. Phys., 117, 2545.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., J. Wadsley, K. Puri, K. Kurihara, and M. Ueno, 1993: Implementation of the JMA typhoon bogus in the BMRC tropical prediction system. J. Meteor. Soc. Japan, 71, 437467.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., L. J. Rikus, R. A. Dare, C. I. W. Tingwell, and H. C. Weber, 2006: Validation of TC-LAPS structure forecasts of some significant 2004–2005 U.S. hurricanes. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., P14A.2. [Available online at https://ams.confex.com/ams/27Hurricanes/webprogram/Paper107795.html.]

  • Davidson, N. E., C. M. Nguyen, and M. Reeder, 2008: Downstream development during the rapid intensification of Hurricanes Opal and Katrina: The distant trough interaction problem. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., P9B.4. [Available online at https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138060.htm.]

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430.

  • Elsberry, R. L., P. A. Harr, R. Ferek, S. Chang, and D. Eleuterio, 2008: Tropical Cyclone Structure (TCS08) Field Experiment in the western North Pacific during 2008. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., P7C.6. [Available online at https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138469.htm.]

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Contributions to tropical cyclone motion by small, medium and large scales in the initial vortex. Mon. Wea. Rev., 117, 721727.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., cited 2008: National Hurricane Center forecast verification report. [Available online at http://www.nhc.noaa.gov/verification.]

  • Franklin, J. L., S. E. Feuer, J. Kaplan, and S. D. Aberson, 1996: Tropical cyclone motion and surrounding flow relationships: Searching for beta gyres in omega dropwindsonde datasets. Mon. Wea. Rev., 124, 6484.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1952: Pressure distribution within a typhoon. Geophys. Mag., 23, 437451.

  • Hanley, D., J. Molinari, and D. Keyser, 2001: A compositive study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584.

    • Search Google Scholar
    • Export Citation
  • Hausman, S. A., K. V. Ooyama, and W. H. Schubert, 2006: Potential vorticity structure of simulated hurricanes. J. Atmos. Sci., 63, 87108.

    • Search Google Scholar
    • Export Citation
  • Havel, P. J., 2009: Surface wind field analyses of tropical cyclones during TCS-08: Relative impacts of aircraft and remotely-sensed observations. M.S. thesis, Department of Meteorology and Physical Oceanography, Naval Postgraduate School, 99 pp. [Available online at http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep_Havel.pdf.]

  • Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342.

  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108.

    • Search Google Scholar
    • Export Citation
  • Kieper, M. E., 2008: A technique for anticipating initial rapid increases in intensity in tropical cyclones, using 37 GHz microwave imagery. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., P2B.15. [Available online at https://ams.confex.com/ams/28Hurricanes/webprogram/Paper140605.html.]

  • Knaff, J. A., and M. DeMaria, 2006: A multi-platform satellite tropical cyclone wind analysis system. Preprints, 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., P4.9. [Available online at https://ams.confex.com/ams/Annual2006/webprogram/Paper99945.html.]

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., S. J. Majumdar, and E. D. Rappin, 2011: Diagnosing initial condition sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008). Mon. Wea. Rev., 139, 32243324.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL Hurricane Prediction System. Mon. Wea. Rev., 123, 27912801.

    • Search Google Scholar
    • Export Citation
  • Kwon, H. J., S. Won, M. Ahn, A. Suh, and H. Chung, 2002: GFDL-type typhoon initialization in MM5. Mon. Wea. Rev., 130, 29662974.

  • Lee, C.-S., K. K. W. Cheung, W.-T. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 32073223.

    • Search Google Scholar
    • Export Citation
  • Lin, I. I., C. C. Wu, K. A. Emanuel, I. H. Lee, C. R. Wu, and I. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and J. Li, 2010: An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear-sky full spatial resolution advanced IR soundings. J. Appl. Meteor. Climatol., 49, 821827.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., M. Kafatos, and N. E. Davidson, 2012: Surface pressure profiles, vortex structure and initialization for hurricane prediction. Part I: Analysis of observed and synthetic structures. Meteor. Atmos. Phys., 117, 523.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy momentum fluxes. J. Atmos. Sci., 46, 10931105.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory of vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Montroty, R., F. Rabier, S. Westrelin, G. Faure, and N. Viltard, 2008: Impact of wind bogus and cloud- and rain-affected SSM/I data on tropical cyclone analyses and forecasts. Quart. J. Roy. Meteor. Soc., 134, 16731699.

    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. V. Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005.

    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., M. J. Reeder, N. E. Davidson, M. T. Montgomery, and R. K. Smith, 2011: Vacillations cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371.

  • Pu, Z.-X., and S. A. Braun, 2001: Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon. Wea. Rev., 129, 20232039.

    • Search Google Scholar
    • Export Citation
  • Puri, K., and Coauthors, 2010: Preliminary results from numerical weather prediction implementation of ACCESS. CAWCR Res. Lett., 5, 1522. [Available online at http://www.cawcr.gov.au/publications/researchletters/CAWCR_Research_Letters_5.pdf.]

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., R. K. Smith, and S. J. Lord, 1991: The detection of flow asymmetries in the tropical cyclone environment. Mon. Wea. Rev., 119, 848855.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical systems. Mon. Wea. Rev., 135, 862876.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123, 35023517.

    • Search Google Scholar
    • Export Citation
  • Schloemer, R. W., 1954: Analysis and synthesis of hurricane wind patterns over Lake Okeechobee, FL. Hydrometeorological Rep. 31, 49 pp.

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383.

  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.

    • Search Google Scholar
    • Export Citation
  • Weber, H. C., 2006: On the pressure-wind relationship in tropical cyclones. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., P14A.6. [Available online at https://ams.confex.com/ams/27Hurricanes/webprogram/Paper107849.html.]

  • Weber, H. C., and R. K. Smith, 1995: Data sparsity and the tropical-cyclone analysis and prediction problem: Some simulation experiments with a barotropic numerical model. Quart. J. Roy. Meteor. Soc., 121, 631654.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264.

  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K.-H. Chou, Y. Wang, and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 23832395.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 38063822.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the Ensemble Kalman Filter (EnKF). Mon. Wea. Rev., 140, 506527.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., X. Zou, and Y.-H. Kuo, 2000: Incorporating the SSM/I-Derived Precipitable Water and Rainfall Rate into a numerical model: A case study for the ERICA IOP-4 Cyclone. Mon. Wea. Rev., 128, 87108.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of the simulated tropical cyclone inner-core size to initial vortex size. Mon. Wea. Rev., 138, 41354157.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961.

  • Zhu, T., D.-L. Zhang, and F. Weng, 2002: Impact of the Advanced Microwave Sounding Unit measurements on hurricane prediction. Mon. Wea. Rev., 130, 24162432.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57, 836860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 50 10
PDF Downloads 82 29 9