Abstract
The aim of this study is to assess the impact of uncertainties in surface parameter and initial conditions on numerical prediction with the Canadian Regional Ensemble Prediction System (REPS). As part of this study, the Canadian version of the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface scheme has been coupled to Environment Canada’s numerical weather prediction model within the REPS. For 20 summer periods in 2009, stochastic perturbations of surface parameters have been generated in several experiments. Each experiment corresponds to 20 simulations differing by the perturbations at the initial time of one or several surface parameters or prognostic variables. The sensitivity to these perturbations is quantified especially for 2-m temperature, 10-m wind speed, cloud fraction, and precipitation up to 48-h lead time. Spatial variability of these sensitivities over the North American continent shows that soil moisture, albedo, leaf area index, and SST have the largest impacts on the screen-level variables. The temporal evolution of these sensitivities appears to be closely linked to the diurnal cycle of the boundary layer. The surface perturbations are shown to increase the ensemble spread of the REPS for all screen-level variables especially for 2-m temperature and 10-m wind speed during daytime. A preliminary study of the impact on the ensemble forecast has shown that the inclusion of the surface perturbations tends to significantly increase the 2-m temperature and 10-m wind speed skill.