Impact of Surface Parameter Uncertainties within the Canadian Regional Ensemble Prediction System

Christophe Lavaysse Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Christophe Lavaysse in
Current site
Google Scholar
PubMed
Close
,
Marco Carrera Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Marco Carrera in
Current site
Google Scholar
PubMed
Close
,
Stéphane Bélair Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Stéphane Bélair in
Current site
Google Scholar
PubMed
Close
,
Normand Gagnon Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Normand Gagnon in
Current site
Google Scholar
PubMed
Close
,
Ronald Frenette Environment Canada, Montreal, Quebec, Canada

Search for other papers by Ronald Frenette in
Current site
Google Scholar
PubMed
Close
,
Martin Charron Meteorological Research Division, Environment Canada, Montreal, Quebec, Canada

Search for other papers by Martin Charron in
Current site
Google Scholar
PubMed
Close
, and
M. K. Yau Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aim of this study is to assess the impact of uncertainties in surface parameter and initial conditions on numerical prediction with the Canadian Regional Ensemble Prediction System (REPS). As part of this study, the Canadian version of the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface scheme has been coupled to Environment Canada’s numerical weather prediction model within the REPS. For 20 summer periods in 2009, stochastic perturbations of surface parameters have been generated in several experiments. Each experiment corresponds to 20 simulations differing by the perturbations at the initial time of one or several surface parameters or prognostic variables. The sensitivity to these perturbations is quantified especially for 2-m temperature, 10-m wind speed, cloud fraction, and precipitation up to 48-h lead time. Spatial variability of these sensitivities over the North American continent shows that soil moisture, albedo, leaf area index, and SST have the largest impacts on the screen-level variables. The temporal evolution of these sensitivities appears to be closely linked to the diurnal cycle of the boundary layer. The surface perturbations are shown to increase the ensemble spread of the REPS for all screen-level variables especially for 2-m temperature and 10-m wind speed during daytime. A preliminary study of the impact on the ensemble forecast has shown that the inclusion of the surface perturbations tends to significantly increase the 2-m temperature and 10-m wind speed skill.

Corresponding author address: Christophe Lavaysse, Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada. E-mail: christophe.lavaysse@mcgill.ca

Abstract

The aim of this study is to assess the impact of uncertainties in surface parameter and initial conditions on numerical prediction with the Canadian Regional Ensemble Prediction System (REPS). As part of this study, the Canadian version of the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface scheme has been coupled to Environment Canada’s numerical weather prediction model within the REPS. For 20 summer periods in 2009, stochastic perturbations of surface parameters have been generated in several experiments. Each experiment corresponds to 20 simulations differing by the perturbations at the initial time of one or several surface parameters or prognostic variables. The sensitivity to these perturbations is quantified especially for 2-m temperature, 10-m wind speed, cloud fraction, and precipitation up to 48-h lead time. Spatial variability of these sensitivities over the North American continent shows that soil moisture, albedo, leaf area index, and SST have the largest impacts on the screen-level variables. The temporal evolution of these sensitivities appears to be closely linked to the diurnal cycle of the boundary layer. The surface perturbations are shown to increase the ensemble spread of the REPS for all screen-level variables especially for 2-m temperature and 10-m wind speed during daytime. A preliminary study of the impact on the ensemble forecast has shown that the inclusion of the surface perturbations tends to significantly increase the 2-m temperature and 10-m wind speed skill.

Corresponding author address: Christophe Lavaysse, Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada. E-mail: christophe.lavaysse@mcgill.ca
Save
  • Adams, D., and A. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213.

  • Adler, R., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., L. Crevier, J. Mailhost, B. Bilodeau, and V. Delage, 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., R. Brown, J. Mailhost, B. Bilodeau, and L. Crevier, 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386.

    • Search Google Scholar
    • Export Citation
  • Benoit, J., J. Cote, and J. Mailhot, 1989: Inclusion of the TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117, 17261750.

    • Search Google Scholar
    • Export Citation
  • Bhumralkar, C., 1975: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteor., 14, 12461258.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 2008: The impact of satellite retrievals in a global sea-surface-temperature analysis. Quart. J. Roy. Meteor. Soc., 134, 17451760.

    • Search Google Scholar
    • Export Citation
  • Brier, G., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13.

  • Brotzge, J., and K. Crawford, 2003: Examination of the surface energy budget: A comparison of eddy correlation and Browen ration measurement systems. J. Hydrometeor., 4, 160178.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M., and D. Karoly, 2007: A brief evaluation of precipitation from the North American Regional Reanalysis. J. Hydrometeor., 8, 837846.

    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. Houtekamer, N. Gagnon, H. Mitchell, and L. Michelin, 2010: Towards random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 18771901.

    • Search Google Scholar
    • Export Citation
  • Chase, T., R. Pielke, T. Kittel, R. Nemani, and S. Running, 1996: Sensitivity of a general circulation model to global changes in leaf area index. J. Geophys. Res., 101 (D3), 73937408.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., 2005: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Climate, 18, 530550.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101 (D3), 72517268.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjic, and K. Michell, 1997: Impact of atmospheric surface-layer parametrizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391421.

    • Search Google Scholar
    • Export Citation
  • Coté, J., A. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998a: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395.

    • Search Google Scholar
    • Export Citation
  • Coté, J., J.-G. Desmarais, A. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998b: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126, 13971418.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. Tibshirani, 1993: An Introduction of the Bootstrap. Chapman and Hall, 460 pp.

  • Eltahir, E., 1998: A soil moisture-rainfall feedback mechanism. 1: Theory and observations. Water Resour. Res., 34, 765776.

  • Fujita, T., D. Stensrud, and D. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135, 18461868.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P., and H. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289.

  • Jaquemin, B., and J. Noilhan, 1990: Sensitivity study and validation of a land surface parametrization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor., 52, 93134.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., G.-Y. Niu, and Z.-L. Yang, 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the central United States. J. Geophys. Res., 114, D06109, doi:10.1029/2008JD010756.

    • Search Google Scholar
    • Export Citation
  • Kain, J., and J. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165170.

  • Koster, R., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 (5687), 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., R. Seager, M. Ting, N. Naig, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105628.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007: An analysis of the warm-season diurnal cycle over the continental United States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. Barker, 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309.

    • Search Google Scholar
    • Export Citation
  • Li, X., M. Charron, L. Spacek, and G. Candille, 2008: A regional ensemble prediction system based on the moist targeted singular vectors and stochastic parameter perturbations. Mon. Wea. Rev., 136, 443462.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J., B. Brasnett, and S. Gagnon, 2007: A Canadian Precipitation Analysis (CAPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117.

    • Search Google Scholar
    • Export Citation
  • Matheson, J., and R. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 10871095.

  • McFarlane, N., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., Y. Zhou, D. Entekhabi, and V. Chatdarong, 2006: Computational issues for large-scale land surface data assimilation problems. J. Hydrometeor., 7, 494510.

    • Search Google Scholar
    • Export Citation
  • Miguez-Machado, G., and J. Peagle, 2001: Sensitivity of North American numerical weather prediction to initial state uncertainty in selected upstream subdomains. Mon. Wea. Rev., 129, 20052022.

    • Search Google Scholar
    • Export Citation
  • Mo, K., 2000: Intraseasonal modulation of summer precipitation over North America. Mon. Wea. Rev., 128, 14901505.

  • Mo, K., and E. Kalnay, 1991: Impact of sea surface temperature anomalies on the skill of monthly forecasts. Mon. Wea. Rev., 119, 27712793.

    • Search Google Scholar
    • Export Citation
  • Mo, K., and J. Paegle, 2000: Influence of the sea surface temperature anomalies on the precipitation regimes over the southwest United States. J. Climate, 13, 35883598.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., H. Barker, J. Cole, M. Iacono, and R. Pincus, 2008: Impact of a new radiation package, MCRAD, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 47734798.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., T. Holt, S. Zhong, P. Pyle, and J. Basara, 2006: Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the Southern Great Plains. J. Geophys. Res., 111, D19107, doi:10.1029/2005JD006746.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549.

    • Search Google Scholar
    • Export Citation
  • Nutter, P., D. Stensrud, and M. Xue, 2004: Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecast. Mon. Wea. Rev., 132, 23582377.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, Vol. 139, ECMWF, 42 pp.

  • Smith, C., M. Lakhtakia, W. Capehart, and T. Carlson, 1994: Initialization of soil-water content in regional-scale atmospheric prediction models. Bull. Amer. Meteor. Soc., 75, 585593.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D., and M. Wandishin, 2000: Correspondence and spread ratios in forecasts verification. Wea. Forecasting, 15, 593602.

  • Stensrud, D., and N. Yussouf, 2003: Short-range ensemble prediction of 2-m temperature and dewpoint temperature over New England. Mon. Wea. Rev., 131, 25102524.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D., H. Brooks, J. Du, M. Tracton, and E. Rogers, 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127, 433446.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., E. Berge, and J. Kristjansson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., R. Vautard, and B. Strauss, 1999: Evaluation of probabilistic prediction systems. Proc. ECMWF Workshop on Predictability, Reading, United Kingdom, ECMWF, 1–25.

  • Treut, H. L., and Z. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5, 175187.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and Z. Toth, 2002: Short-term dynamics of model errors. J. Atmos. Sci., 59, 25942604.

  • Wandishin, M., S. Mullen, D. Stensrud, and H. Brooks, 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129, 729747.

    • Search Google Scholar
    • Export Citation
  • Yeh, K.-S., J. Coté, A. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 2002: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 130, 339356.

    • Search Google Scholar
    • Export Citation
  • Yu, W., L. Garand, and A. Dastoor, 1997: Evaluation of model clouds and radiation at 100 km scale using goes data. Tellus, 49, 246262.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., M. Roch, S. Laroche, and M. Charron, 2003: The subgrid-scale orographic parameterization of the GEM model. Atmos.–Ocean, 41, 155170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 314 139 12
PDF Downloads 166 59 9