Composite Vertical Structure of Vertical Velocity in Nonprecipitating Cumulus Clouds

Yonggang Wang University of Wyoming, Laramie, Wyoming

Search for other papers by Yonggang Wang in
Current site
Google Scholar
PubMed
Close
and
Bart Geerts University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vertical transects of Doppler vertical velocity data, obtained from an airborne profiling millimeter-wave cloud radar, are composited for a large number of cumulus clouds (Cu) at various stages of their life cycle, to examine typical circulations patterns. The Cu clouds range in depth between ~500 and 6000 m and are generally nonprecipitating. They were sampled on board the University of Wyoming King Air over a mountain in southern Arizona during the summer monsoon, and over the high plains of southeastern Wyoming. The composite analysis shows clear evidence of an updraft/downdraft dipole in the upper cloud half, consistent with a horizontal vortex ring. A single cloud-scale toroidal circulation emerges notwithstanding the complex finescale structure with multiple vortices, commonly evident in individual transects of Cu clouds. The stratification of all Cu samples as a function of their buoyancy and mean vertical velocity shows that the vortex ring pattern tends to be more pronounced in positively buoyant Cu with rising motion (presumably young clouds) than in negatively buoyant and/or sinking Cu near the end of their life cycle. Yet no reverse vortex ring is observed in the latter Cu, suggesting that the decaying phase is short lived in these dry environments. The vortex-ring circulation pattern is more intense in the shallower Cu, which are also more buoyant and have a liquid water content closer to adiabatic values. Wind shear tends to tilt Cu clouds and their vortex ring, resulting in a broadening of the upshear updraft and downshear downdraft.

Corresponding author address: Bart Geerts, Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071. E-mail: geerts@uwyo.edu

Abstract

Vertical transects of Doppler vertical velocity data, obtained from an airborne profiling millimeter-wave cloud radar, are composited for a large number of cumulus clouds (Cu) at various stages of their life cycle, to examine typical circulations patterns. The Cu clouds range in depth between ~500 and 6000 m and are generally nonprecipitating. They were sampled on board the University of Wyoming King Air over a mountain in southern Arizona during the summer monsoon, and over the high plains of southeastern Wyoming. The composite analysis shows clear evidence of an updraft/downdraft dipole in the upper cloud half, consistent with a horizontal vortex ring. A single cloud-scale toroidal circulation emerges notwithstanding the complex finescale structure with multiple vortices, commonly evident in individual transects of Cu clouds. The stratification of all Cu samples as a function of their buoyancy and mean vertical velocity shows that the vortex ring pattern tends to be more pronounced in positively buoyant Cu with rising motion (presumably young clouds) than in negatively buoyant and/or sinking Cu near the end of their life cycle. Yet no reverse vortex ring is observed in the latter Cu, suggesting that the decaying phase is short lived in these dry environments. The vortex-ring circulation pattern is more intense in the shallower Cu, which are also more buoyant and have a liquid water content closer to adiabatic values. Wind shear tends to tilt Cu clouds and their vortex ring, resulting in a broadening of the upshear updraft and downshear downdraft.

Corresponding author address: Bart Geerts, Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071. E-mail: geerts@uwyo.edu
Save
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626641.

  • Blyth, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 39443964.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 11711190.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J., D. Baumgardner, and B. Baker, 1994: A review and discussion of processing algorithms for FSSP concentration measurements. J. Atmos. Oceanic Technol., 11, 14091414.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 55, 34403455.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and G. J. Tripoli, 1978: Cumulus convection in shear flow—Three-dimensional numerical experiments. J. Atmos. Sci., 35, 15031521.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., 2005: The structure of thermals in cumulus from airborne dual-Doppler radar observations. Ph.D. thesis, University of Wyoming, 331 pp.

  • Damiani, R., and S. Haimov, 2006: A high-resolution dual-Doppler technique for fixed multi-antenna airborne radar. IEEE Trans. Geosci. Remote Sens., 42, 34753489.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and G. Vali, 2007: Evidence for tilted toroidal circulations in cumulus. J. Atmos. Sci., 64, 20452060.

  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: Cumulus Photogrammetric, In-situ and Doppler Observations: The CuPIDO 2006 experiment. Bull. Amer. Meteor. Soc., 89, 5773.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and A. P. Siebesma, 2010: Analytical expressions for entrainment and detrainment in cumulus convection. Quart. J. Roy. Meteor. Soc., 136, 12161227, doi:10.1002/qj.640.

    • Search Google Scholar
    • Export Citation
  • Deng, A., N. L. Seaman, and J. S. Kain, 2003: A shallow-convection parameterization for mesoscale models. Part I: Submodel description and preliminary applications. J. Atmos. Sci., 60, 3456.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52, 27882799.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1978: Manual of downburst identification for project NIMROD. Satellite and Mesometeorology Research Project Paper 156, Department of Geophysical Sciences, University of Chicago, 99 pp.

  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 42724288.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252.

  • Ghate, V. P., M. A. Miller, and L. DiPretore, 2011: Vertical velocity structure of marine boundary layer trade wind cumulus clouds. J. Geophys. Res., 116, D16206, doi:10.1029/2010JD015344.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1993: Cumulus experiment, fine-scale mixing and buoyancy reversal. Quart. J. Roy. Meteor. Soc., 119, 935956.

  • Grabowski, W. W., and T. L. Clark, 1993: Cloud-environment interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50, 555573.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2004: Moisture-convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130, 30813104.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018.

  • Heus, T., G. van Dijk, H. J. J. Jonker, and H. E. A. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65, 25812597.

    • Search Google Scholar
    • Export Citation
  • Heus, T., H. J. J. Jonker, H. E. A. Van den Akker, E. J. Griffith, M. Koutek, and F. H. Post, 2009: A statistical approach to the life cycle analysis of cumulus clouds selected in a virtual reality environment. J. Geophys. Res., 114, D06208, doi:10.1029/2008JD010917.

    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., B. Stevens, and K. F. Evans, 2005: A large-eddy simulation study of anisotropy in fair-weather cumulus cloud fields. J. Atmos. Sci., 62, 21552171.

    • Search Google Scholar
    • Export Citation
  • Johari, H., 1992: Mixing in thermals with and without buoyancy reversal. J. Atmos. Sci., 49, 14121426.

  • Jonas, P. R., 1990: Observations of cumulus cloud entrainment. Atmos. Res., 25, 105127.

  • Khairoutdinov, M., C. DeMott, and D. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU Multiscale Modeling Framework. J. Climate, 21, 413431.

    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and T. L. Clark, 1985: Dynamics of the cloud–environment interface and entrainment in small cumuli: Two-dimensional simulations in the absence of ambient shear. J. Atmos. Sci., 42, 26212642.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., L. J. Miller, and R. A. Rilling, 2008: Aspects of precipitation development in trade wind cumulus revealed by differential reflectivity at s band. J. Atmos. Sci., 65, 25632580.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and B. Albrecht, 2010: Vertical velocity statistics in fair-weather cumuli at the ARM TWP Nauru Climate Research Facility. J. Climate, 23, 65906604.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D., E. Miller, and R. Friesen, 1991: A three-aircraft intercomparison of two types of air motion measurement systems. J. Atmos. Oceanic Technol., 8, 4150.

    • Search Google Scholar
    • Export Citation
  • Leon, D., G. Vali, and M. Lothon, 2006: Dual-Doppler analysis in a single plane from an airborne platform. J. Atmos. Oceanic Technol., 23, 322.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7, 464479.

    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., 1977: The lognormal distribution and cumulus cloud populations. Mon. Wea. Rev., 105, 865872.

  • MacPherson, J. I., and G. A. Isaac, 1977: Turbulent characteristics of some Canadian cumulus clouds. J. Appl. Meteor., 16, 8190.

  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

  • Pazmany, A., R. McIntosh, R. Kelly, and G. Vali, 1994: An airborne 95 GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 32, 731739.

    • Search Google Scholar
    • Export Citation
  • Perry, K. D., and P. V. Hobbs, 1996: Influence of isolated cumulus clouds on the humidity of their surroundings. J. Atmos. Sci., 53, 159174.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 976 pp.

  • Raga, G. B., J. B. Jensen, and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47, 338356.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Rodts, S. M. A., P. G. Duynkerke, and H. J. J. Jonker, 2003: Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci., 60, 18951912.

    • Search Google Scholar
    • Export Citation
  • Sanchez, O., D. Raymond, L. Libersky, and A. Petschek, 1989: The development of thermals from rest. J. Atmos. Sci., 46, 27082718.

  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow convection. J. Atmos. Sci., 52, 650656.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1967: A study of the effect of precipitation on cumulus dynamics. J. Atmos. Sci., 24, 3645.

  • Stith, J. L., 1992: Observations of cloud-top entrainment in cumuli. J. Atmos. Sci., 49, 13341347.

  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor., 24, 4956.

  • Vali, G., and S. Haimov, 1999: Observed extinction by clouds at 95 GHz. IEEE Trans. Geosci. Remote Sens., 39, 190193.

  • Wang, Y., and B. Geerts, 2009: Estimating the evaporative cooling bias of an airborne reverse flow thermometer. J. Atmos. Oceanic Technol., 26, 321.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Geerts, 2010: Humidity variations across the edge of trade wind cumuli: Observations and dynamical implications. Atmos. Res., 97, 144156, doi:10.1016/j.atmosres.2010.03.017.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Geerts, 2011: Observations of detrainment signatures from non-precipitating orographic cumulus clouds. Atmos. Res., 99, 302324.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Geerts, and J. French, 2009: Dynamics of the cumulus cloud margin: An observational study. J. Atmos. Sci., 66, 36603677.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668.

    • Search Google Scholar
    • Export Citation
  • Weinstein, A. I., 1970: A numerical model of cumulus dynamics and microphysics. J. Atmos. Sci., 27, 246255.

  • Woodward, B., 1959: The motion in and around isolated thermals. Quart. J. Roy. Meteor. Soc., 85, 144151.

  • Zhao, M., and P. H. Austin, 2005a: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62, 12691290.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005b: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 535 266 18
PDF Downloads 258 71 18