Hidden Error Variance Theory. Part I: Exposition and Analytic Model

Craig H. Bishop Naval Research Laboratory, Monterey, California

Search for other papers by Craig H. Bishop in
Current site
Google Scholar
PubMed
Close
and
Elizabeth A. Satterfield National Research Council, Monterey, California

Search for other papers by Elizabeth A. Satterfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A conundrum of predictability research is that while the prediction of flow-dependent error distributions is one of its main foci, chaos fundamentally hides flow-dependent forecast error distributions from empirical observation. Empirical estimation of such error distributions requires a large sample of error realizations given the same flow-dependent conditions. However, chaotic elements of the flow and the observing network make it impossible to collect a large enough conditioned error sample to empirically define such distributions and their variance. Such conditional variances are “hidden.” Here, an exposition of the problem is developed from an ensemble Kalman filter data assimilation system applied to a 10-variable nonlinear chaotic model and 25 000 replicate models. The 25 000 replicates reveal the error variances that would otherwise be hidden. It is found that the inverse-gamma distribution accurately approximates the posterior distribution of conditional error variances given an imperfect ensemble variance and provides a reasonable approximation to the prior climatological distribution of conditional error variances. A new analytical model shows how the properties of a likelihood distribution of ensemble variances given a true conditional error variance determine the posterior distribution of error variances given an ensemble variance. The analytically generated distributions are shown to satisfactorily fit empirically determined distributions. The theoretical analysis yields a rigorous interpretation and justification of hybrid error variance models that linearly combine static and flow-dependent estimates of forecast error variance; in doing so, it also helps justify and inform hybrid error covariance models.

Corresponding author address: Craig H. Bishop, Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Bldg. 702, Room 212, Monterey, CA 93943-5502. E-mail: bishop@nrlmry.navy.mil

Abstract

A conundrum of predictability research is that while the prediction of flow-dependent error distributions is one of its main foci, chaos fundamentally hides flow-dependent forecast error distributions from empirical observation. Empirical estimation of such error distributions requires a large sample of error realizations given the same flow-dependent conditions. However, chaotic elements of the flow and the observing network make it impossible to collect a large enough conditioned error sample to empirically define such distributions and their variance. Such conditional variances are “hidden.” Here, an exposition of the problem is developed from an ensemble Kalman filter data assimilation system applied to a 10-variable nonlinear chaotic model and 25 000 replicate models. The 25 000 replicates reveal the error variances that would otherwise be hidden. It is found that the inverse-gamma distribution accurately approximates the posterior distribution of conditional error variances given an imperfect ensemble variance and provides a reasonable approximation to the prior climatological distribution of conditional error variances. A new analytical model shows how the properties of a likelihood distribution of ensemble variances given a true conditional error variance determine the posterior distribution of error variances given an ensemble variance. The analytically generated distributions are shown to satisfactorily fit empirically determined distributions. The theoretical analysis yields a rigorous interpretation and justification of hybrid error variance models that linearly combine static and flow-dependent estimates of forecast error variance; in doing so, it also helps justify and inform hybrid error covariance models.

Corresponding author address: Craig H. Bishop, Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Bldg. 702, Room 212, Monterey, CA 93943-5502. E-mail: bishop@nrlmry.navy.mil
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., E. A. Satterfield, and K. T. Shanley, 2013: Hidden error variance theory. Part II: An instrument that reveals hidden error variance distributions from ensemble forecasts and observations. Mon. Wea. Rev.,141, 1469–1483.

  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2003: Bayesian Data Analysis. 2nd ed. CRC Press, 696 pp.

  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919.

  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 12251242.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.

  • Lorenz, E. N., 1996: Predictability—A problem solved. Proc. Predictability, Reading, United Kingdom, ECMWF.

  • Lorenz, E. N., 2005: Designing chaotic models. J. Atmos. Sci., 62, 15741587.

  • Majumdar, S. J., C. H. Bishop, I. Szunyogh, and Z. Toth, 2001: Can an ensemble transform Kalman filter predict the reduction in forecast error variance produced by targeted observations? Quart. J. Roy. Meteor. Soc., 127, 28032820.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 10931108.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428.

  • Pedlosky, J., and C. Frenzen, 1980: Chaotic and periodic behavior of finite-amplitude baroclinic waves. J. Atmos. Sci., 37, 11771196.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319.

  • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114.

  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2005: Improvement of ensemble reliability with a new dressing kernel. Quart. J. Roy. Meteor. Soc., 131, 965986.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 201 15
PDF Downloads 215 68 11