Eastern North Pacific Hurricane Season of 2011

Eric S. Blake NOAA/NWS/NCEP National Hurricane Center, Miami, Florida

Search for other papers by Eric S. Blake in
Current site
Google Scholar
PubMed
Close
and
Todd B. Kimberlain NOAA/NWS/NCEP National Hurricane Center, Miami, Florida

Search for other papers by Todd B. Kimberlain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Overall activity during the 2011 eastern North Pacific hurricane season was near average. Of the 11 tropical storms that formed, 10 became hurricanes and 6 reached major hurricane strength (category 3 or stronger on the Saffir–Simpson hurricane wind scale). For comparison, the 1981–2010 averages are about 15 tropical storms, 8 hurricanes, and 4 major hurricanes. Interestingly, although the number of named storms was below average, the numbers of hurricanes and major hurricanes were above average. The 2011 season had the most hurricanes since 2006 and the most major hurricanes since 1998. Two hurricanes affected the southwestern coast of Mexico (Beatriz as a category 1 hurricane and Jova as a category 2 hurricane), and the season’s tropical cyclones caused about 49 deaths. On average, the National Hurricane Center track forecasts in the eastern North Pacific for 2011 were very skillful.

Corresponding author address: Eric S. Blake, National Hurricane Center, 11691 SW 17th St., Miami, FL 33165. E-mail: eric.s.blake@noaa.gov

Abstract

Overall activity during the 2011 eastern North Pacific hurricane season was near average. Of the 11 tropical storms that formed, 10 became hurricanes and 6 reached major hurricane strength (category 3 or stronger on the Saffir–Simpson hurricane wind scale). For comparison, the 1981–2010 averages are about 15 tropical storms, 8 hurricanes, and 4 major hurricanes. Interestingly, although the number of named storms was below average, the numbers of hurricanes and major hurricanes were above average. The 2011 season had the most hurricanes since 2006 and the most major hurricanes since 1998. Two hurricanes affected the southwestern coast of Mexico (Beatriz as a category 1 hurricane and Jova as a category 2 hurricane), and the season’s tropical cyclones caused about 49 deaths. On average, the National Hurricane Center track forecasts in the eastern North Pacific for 2011 were very skillful.

Corresponding author address: Eric S. Blake, National Hurricane Center, 11691 SW 17th St., Miami, FL 33165. E-mail: eric.s.blake@noaa.gov
Save
  • Aberson, S. D., 1998: Five-day tropical cyclone track forecasts in the North Atlantic basin. Wea. Forecasting, 13, 10051015.

  • Avila, L. A., and S. R. Stewart, 2013: Atlantic hurricane season of 2011. Mon. Wea. Rev., in press.

  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50.

  • Blake, E. S., E. J. Gibney, D. P. Brown, M. Mainelli, J. L. Franklin, and T. B. Kimberlain, 2009: Tropical cyclones of the eastern North Pacific basin, 1949–2006. Historical Climatology Series 6-5. National Climatic Data Center, Asheville, NC, 162 pp.

  • Brennan, M. J., C. C. Hennon, and R. D. Knabb, 2009: The operational use of QuikSCAT ocean surface vector winds at the National Hurricane Center. Wea. Forecasting, 24, 621645.

    • Search Google Scholar
    • Export Citation
  • Brueske, K. F., and C. S. Velden, 2003: Satellite-based tropical cyclone intensity estimation using the NOAA-KLM series Advanced Microwave Sounding Unit (AMSU). Mon. Wea. Rev., 131, 687697.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. F. Franklin, 2012: 2011 National Hurricane Center Forecast verification report. NOAA/NHC, 76 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2011.pdf.]

  • Chu, P. S., and X. Zhao, 2007: A Bayesian regression approach for predicting seasonal tropical cyclone activity over the central North Pacific. J. Climate, 20, 40024013.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, National Oceanic and Atmospheric Administration, Washington, DC, 47 pp.

  • Ferreira, R. N., and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261285.

  • Hawkins, J. D., T. Lee, J. Turk, C. Sampson, J. Kent, and K. Richardson, 2001: Real-time Internet distribution of satellite products for TC reconnaissance. Bull. Amer. Meteor. Soc., 82, 567578.

    • Search Google Scholar
    • Export Citation
  • Herndon, D., and C. S. Velden, 2004: Updates to the UW-CIMSS AMSU-based TC intensity algorithm. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 118–119.

  • Jarvinen, B. R., and C. J. Neumann, 1979: Statistical forecasts of tropical cyclone intensity for the North Atlantic basin. NOAA Tech. Memo. NWS NHC-10, 22 pp.

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, B. Sampson, and J. M. Gross, 2003a: Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 8092.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., J. P. Kossin, and M. DeMaria, 2003b: Annular hurricanes. Wea. Forecasting, 18, 204223.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. B., 1972: An alternate to the HURRAN (hurricane analog) tropical cyclone forecast system. NOAA Tech. Memo. NWS SR-62, 24 pp.

  • Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 359419.

  • Saffir, H. S., 1973: Hurricane wind and storm surge. Mil. Eng., 423, 45.

  • Schott, T., and Coauthors, 2010: The Saffir–Simpson hurricane wind scale. NWS Saffir–Simpson Team, 4 pp. [Available online at http://www.nhc.noaa.gov/pdf/sshws.pdf.]

  • Schreck, C. J., and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian Oscillation. Mon. Wea. Rev., 139, 27232734.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1974: The hurricane disaster potential scale. Weatherwise, 27, 169, 186.

  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and C. J. Schreck III, 2012: Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Wea. Rev., 140, 21982214.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1101 681 46
PDF Downloads 157 62 18