Comparison between Dual-Doppler and EnKF Storm-Scale Wind Analyses: The 29–30 May 2004 Geary, Oklahoma, Supercell Thunderstorm

Corey K. Potvin Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Corey K. Potvin in
Current site
Google Scholar
PubMed
Close
,
Louis J. Wicker NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Louis J. Wicker in
Current site
Google Scholar
PubMed
Close
,
Michael I. Biggerstaff School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael I. Biggerstaff in
Current site
Google Scholar
PubMed
Close
,
Daniel Betten School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Daniel Betten in
Current site
Google Scholar
PubMed
Close
, and
Alan Shapiro School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Alan Shapiro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Kinematical analyses of storm-scale mobile radar observations are critical to advancing our understanding of supercell thunderstorms. Maximizing the accuracy of these analyses, and characterizing the uncertainty in ensuing conclusions about storm structure and processes, requires knowledge of the error characteristics of different retrieval techniques under different observational scenarios. Using storm-scale mobile radar observations of a tornadic supercell, this study examines the impacts on ensemble Kalman filter (EnKF) wind analyses of the number of available radars (one versus two), uncertainty in the model-initialization sounding, the sophistication of the microphysical parameterization scheme (double versus single moment), and assimilating reflectivity observations. The relative accuracy of three-dimensional variational data assimilation (3DVAR) dual-Doppler wind retrievals and single- and dual-radar EnKF wind analyses of the supercell is also explored. The results generally reinforce the findings of a previous study that used observing system simulation experiments to explore the same issues. Both studies suggest that single-radar EnKF wind analyses can be very useful once enough data have been assimilated, but that subsequent analyses that operate on the retrieved wind field gradients should be interpreted with caution. In the present study, severe errors appear to occur in computed Lagrangian circulation time series, imperiling interpretation of the underlying dynamics. This result strongly suggests that dual- and multiple-Doppler radar deployment strategies continue to be used in mobile field campaigns.

Corresponding author address: Dr. Corey K. Potvin, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: corey.potvin@noaa.gov

Abstract

Kinematical analyses of storm-scale mobile radar observations are critical to advancing our understanding of supercell thunderstorms. Maximizing the accuracy of these analyses, and characterizing the uncertainty in ensuing conclusions about storm structure and processes, requires knowledge of the error characteristics of different retrieval techniques under different observational scenarios. Using storm-scale mobile radar observations of a tornadic supercell, this study examines the impacts on ensemble Kalman filter (EnKF) wind analyses of the number of available radars (one versus two), uncertainty in the model-initialization sounding, the sophistication of the microphysical parameterization scheme (double versus single moment), and assimilating reflectivity observations. The relative accuracy of three-dimensional variational data assimilation (3DVAR) dual-Doppler wind retrievals and single- and dual-radar EnKF wind analyses of the supercell is also explored. The results generally reinforce the findings of a previous study that used observing system simulation experiments to explore the same issues. Both studies suggest that single-radar EnKF wind analyses can be very useful once enough data have been assimilated, but that subsequent analyses that operate on the retrieved wind field gradients should be interpreted with caution. In the present study, severe errors appear to occur in computed Lagrangian circulation time series, imperiling interpretation of the underlying dynamics. This result strongly suggests that dual- and multiple-Doppler radar deployment strategies continue to be used in mobile field campaigns.

Corresponding author address: Dr. Corey K. Potvin, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: corey.potvin@noaa.gov
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. L. Pazmany, 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543.

    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280.

  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 153–156.

  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 14571475.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and L. J. Wicker, 2012: Comparison between dual-Doppler and EnKF storm-scale wind analyses: Observing system simulation experiments with a supercell thunderstorm. Mon. Wea. Rev., 140, 39723991.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., A. Shapiro, M. I. Biggerstaff, and J. M. Wurman, 2011: The VDAC technique: A variational method for detecting and characterizing convective vortices in multiple-Doppler radar data. Mon. Wea. Rev., 139, 25932613.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., D. Betten, L. J. Wicker, K. L. Elmore, and M. I. Biggerstaff, 2012a: 3DVAR versus traditional dual-Doppler retrieval of a simulated supercell thunderstorm. Mon. Wea. Rev., 140, 34873494.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., A. Shapiro, and M. Xue, 2012b: Impact of a vertical vorticity constraint in variational dual-Doppler wind analysis: Tests with real and simulated supercell data. J. Atmos. Oceanic Technol., 29, 3249.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., L. J. Wicker, and A. Shapiro, 2012c: Assessing errors in variational dual-Doppler wind syntheses of supercell thunderstorms observed by storm-scale mobile radars. J. Atmos. Oceanic Technol., 29, 10091025.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 20892106.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Thompson, T. E., L. J. Wicker, and X. Wang, 2012: Impact from a volumetric radar-sampling operator for radial velocity observations within EnKF supercell assimilation. J. Atmos. Oceanic Technol., 29, 14171427.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with radar data and ensemble Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 4666.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and G. Zhang, 2009: Simultaneous state estimation and attenuation correction for thunderstorms with radar data using an ensemble Kalman filter: Tests with simulated data. Quart. J. Roy. Meteor. Soc., 135, 14091423.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 71 7
PDF Downloads 122 49 7