Abstract
A historical simulation (1976–2002) of the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, version 4 (ICTP RegCM4), coupled to a one-dimensional lake model, is validated against observed lake ice cover and snowfall across the Great Lakes Basin. The model reproduces the broad temporal and spatial features of both variables in terms of spatial distribution, seasonal cycle, and interannual variability, including climatological characteristics of lake-effect snowfall, although the simulated ice cover is overly extensive largely due to the absence of lake circulations. A definition is introduced for identifying heavy lake-effect snowstorms in regional climate model output for all grid cells in the Great Lakes Basin, using criteria based on location, wind direction, lake ice cover, and snowfall. Simulated heavy lake-effect snowstorms occur most frequently downwind of the Great Lakes, particularly to the east of Lake Ontario and to the east and south of Lake Superior, and are most frequent in December–January. The mechanism for these events is attributed to an anticyclone over the central United States and related cold-air outbreak for areas downwind of Lakes Ontario and Erie, in contrast to a nearby cyclone over the Great Lakes Basin and associated cold front for areas downwind of Lakes Superior, Huron, and Michigan.
Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-11-00369.s1.
Nelson Institute Center for Climatic Research Publication Number 1131.