A New Parametric Tropical Cyclone Tangential Wind Profile Model

Vincent T. Wood NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Vincent T. Wood in
Current site
Google Scholar
PubMed
Close
,
Luther W. White Department of Mathematics, University of Oklahoma, Norman, Oklahoma

Search for other papers by Luther W. White in
Current site
Google Scholar
PubMed
Close
,
Hugh E. Willoughby Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Hugh E. Willoughby in
Current site
Google Scholar
PubMed
Close
, and
David P. Jorgensen NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David P. Jorgensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new parametric tropical cyclone (TC) wind profile model is presented for depicting representative surface pressure profiles corresponding to multiple-maxima wind profiles that exhibit single-, dual-, and triple-maximum concentric-eyewall wind peaks associated with the primary (inner), secondary (first outer), and tertiary (second outer) complete rings of enhanced radar reflectivity. One profile employs five key parameters: tangential velocity maximum, radius of the maximum, and three different shape velocity parameters related to the shape of the profile. After tailoring the model for TC applications, a gradient wind is computed from a cyclostrophic wind formulated in terms of the cyclostrophic Rossby number. A pressure, via cyclostrophic balance, was partitioned into separate pressure components that corresponded to multiple-maxima cyclostrophic wind profiles in order to quantitatively evaluate the significant fluctuations in central pressure deficits. The model TC intensity in terms of varying growth, size, and decay velocity profiles was analyzed in relation to changing each of five key parameters. Analytical results show that the first shape velocity parameter, changing a sharply to broadly peaked wind profile, increases the TC intensity and size by producing the corresponding central pressure fall. An increase (decrease) in the second (third) shape velocity parameter yields the pressure rise (fall) by decreasing (increasing) the inner (outer) wind profile inside (outside) the radius of the maximum. When a single-maximum tangential wind profile evolves to multiple-maxima tangential wind profiles during an eye replacement cycle, the pressure falls and rises are sensitively fluctuated.

Corresponding author address: Vincent T. Wood, 120 David L. Boren Blvd., Room 3921, Norman, OK 73072-7323. E-mail: vincent.wood@noaa.gov

Abstract

A new parametric tropical cyclone (TC) wind profile model is presented for depicting representative surface pressure profiles corresponding to multiple-maxima wind profiles that exhibit single-, dual-, and triple-maximum concentric-eyewall wind peaks associated with the primary (inner), secondary (first outer), and tertiary (second outer) complete rings of enhanced radar reflectivity. One profile employs five key parameters: tangential velocity maximum, radius of the maximum, and three different shape velocity parameters related to the shape of the profile. After tailoring the model for TC applications, a gradient wind is computed from a cyclostrophic wind formulated in terms of the cyclostrophic Rossby number. A pressure, via cyclostrophic balance, was partitioned into separate pressure components that corresponded to multiple-maxima cyclostrophic wind profiles in order to quantitatively evaluate the significant fluctuations in central pressure deficits. The model TC intensity in terms of varying growth, size, and decay velocity profiles was analyzed in relation to changing each of five key parameters. Analytical results show that the first shape velocity parameter, changing a sharply to broadly peaked wind profile, increases the TC intensity and size by producing the corresponding central pressure fall. An increase (decrease) in the second (third) shape velocity parameter yields the pressure rise (fall) by decreasing (increasing) the inner (outer) wind profile inside (outside) the radius of the maximum. When a single-maximum tangential wind profile evolves to multiple-maxima tangential wind profiles during an eye replacement cycle, the pressure falls and rises are sensitively fluctuated.

Corresponding author address: Vincent T. Wood, 120 David L. Boren Blvd., Room 3921, Norman, OK 73072-7323. E-mail: vincent.wood@noaa.gov
Save
  • Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947–957.

  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Croxford, M., and G. M. Barnes, 2002: Inner core strength of Atlantic tropical cyclones. Mon. Wea. Rev., 130, 127–139.

  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of advanced microwave sounding unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 399–415.

    • Search Google Scholar
    • Export Citation
  • Depperman, C. E., 1947: Notes on the origin and structure of Philippine typhoons. Bull. Amer. Meteor. Soc., 28, 399–404.

  • Gray, W. M., and D. J. Shea, 1973: The hurricane’s inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 1565–1576.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, and R. K. Taft, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705–722.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212–1218.

  • Holland, G. J., J. I. Belanger, and A. Fritz, 2010: A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138, 4393–4401.

    • Search Google Scholar
    • Export Citation
  • Holliday, C. R., 1976: Typhoon June—Most intense of record. Mon. Wea. Rev., 104, 1188–1190.

  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662–674.

    • Search Google Scholar
    • Export Citation
  • Hughes, L. A., 1952: On the low-level wind structure of tropical storms. J. Meteor., 9, 422–428.

  • Jelesnianski, C. P., 1966: Numerical computations of storm surges without bottom stress. Mon. Wea. Rev., 94, 379–394.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287–1311.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary-layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 2469–2484.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 2169–2193.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 2194–2211.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary-layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 2485–2501.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 71–88.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, P. J. Fitzpatrick, Y. Jin, and C. M. Hill, 2011: Simple diagnosis of tropical cyclone structure via pressure gradients. Wea. Forecasting, 26, 1020–1031.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematics and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 1079–1090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196–2209.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 3893–3917.

    • Search Google Scholar
    • Export Citation
  • Malkus, K. J., and H. Riehl, 1960: On the dynamics and energy transformation in steady-state hurricanes. Tellus, 12, 1–20.

  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408–425.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259.

    • Search Google Scholar
    • Export Citation
  • McNoldy, B. D., 2004: Triple eyewall in Hurricane Juliette. Bull. Amer. Meteor. Soc., 85, 1663–1666.

  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 1408–1418.

  • Myers, V. A., 1957: Maximum hurricane winds. Bull. Amer. Meteor. Soc., 38, 227–228.

  • Phadke, A. C., C. D. Martino, K. F. Cheung, and S. H. Houston, 2003: Modelling of tropical cyclone winds and waves for emergency management. Ocean Eng., 30, 553–578.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: Numerical Recipes in Fortran 77: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 933 pp.

  • Rankine, W. J. M., 1882: A Manual of Applied Physics. 10th ed. Charles Griff and Co., 663 pp.

  • Riehl, H., Ed., 1954: Tropical storms. Tropical Meteorology, McGraw-Hill, 281–357.

  • Riehl, H., 1963: Some relations between wind and thermal structure of steady-state hurricanes. J. Atmos. Sci., 20, 276–287.

  • Schloemer, R. W., 1954: Analysis and synthesis of hurricane wind patterns over Lake Okechobee, Florida. Hydrometeorology Rep. 31, Dept. of Commerce, Washington, DC, 49 pp.

  • Schubert, W. H., J. J. Hack, P. L. Silva Dias, and S. R. Fulton, 1980: Geostrophic adjustment in an axisymmetric vortex. J. Atmos. Sci., 37, 1464–1483.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197–1223.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 3829–3847.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, C. M. Rozoff, and J. Knaff, 2012: Hurricane eyewall replacement cycle thermodynamics and the relic inner eyewall circulation. Mon. Wea. Rev., 140, 4035–4045.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., and L. A. Twisdale Jr., 1995: Prediction of hurricane wind speeds in the United States. J. Struct. Eng., 121, 1691–1699.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., and D. Wadhera, 2008: Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*Wind data. J. Appl. Meteor., 47, 2497–2517.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., F. J. Masters, M. D. Powell, and D. Wadhera, 2009a: Hurricane hazard modeling: The past, present, and future. J. Wind Eng. Ind. Aerodyn., 97, 392–405, doi:10.1016/j.jweia.2009.05.005.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen, 2009b: A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteor., 48, 381–405.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 1032–1043.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 1044–1056.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183–191.

  • Willoughby, H. E., 1990a: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242–264.

  • Willoughby, H. E., 1990b: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265–274.

  • Willoughby, H. E., 1991: Reply. J. Atmos. Sci., 48, 1209–1212.

  • Willoughby, H. E., 1995: Mature structure and evolution. Global Perspectives on Tropical Cyclones, WMO Tech. Doc. WMO/TD-693, Rep. TCP-38, 37 pp.

  • Willoughby, H. E., 2011: The golden radius in balanced atmospheric flows. Mon. Wea. Rev., 139, 1164–1168.

  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 3033–3048.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 1102–1120.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles: Development, testing, and verification. J. Atmos. Sci., 68, 990–1006.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506–527.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1161 469 46
PDF Downloads 834 306 22