A Global Climatology of Baroclinically Influenced Tropical Cyclogenesis

Ron McTaggart-Cowan Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Ron McTaggart-Cowan in
Current site
Google Scholar
PubMed
Close
,
Thomas J. Galarneau Jr. National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Thomas J. Galarneau Jr. in
Current site
Google Scholar
PubMed
Close
,
Lance F. Bosart Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
,
Richard W. Moore Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Richard W. Moore in
Current site
Google Scholar
PubMed
Close
, and
Olivia Martius Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Search for other papers by Olivia Martius in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclogenesis is generally considered to occur in regions devoid of baroclinic structures; however, an appreciable number of tropical cyclones (TCs) form in baroclinic environments each year. A global climatology of these baroclinically influenced TC developments is presented in this study. An objective classification strategy is developed that focuses on the characteristics of the environmental state rather than on properties of the vortex, thus allowing for a pointwise “development pathway” classification of reanalysis data. The resulting climatology shows that variability within basins arises primarily as a result of local surface thermal contrasts and the positions of time-mean features on the subtropical tropopause. The pathway analyses are sampled to generate a global climatology of 1948–2010 TC developments classified by baroclinic influence: nonbaroclinic (70%), low-level baroclinic (9%), trough induced (5%), weak tropical transition (11%), and strong tropical transition (5%). All basins other than the North Atlantic are dominated by nonbaroclinic events; however, there is extensive interbasin variability in secondary development pathways. Within each basin, subregions and time periods are identified in which the relative importance of the development pathways also differs. The efficiency of tropical cyclogenesis is found to be highly dependent on development pathway. The peak efficiency defined in the classification subspace straddles the nonbaroclinic/trough-induced boundary, suggesting that the optimal environment for TC development includes a baroclinic contribution from an upper-level disturbance. By assessing the global distribution of baroclinically influenced TC formations, this study identifies regions and pathways whose further study could yield improvements in our understanding of this important subset of TC developments.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-12-00186.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Ron McTaggart-Cowan, 2121 Trans-Canada Highway, Floor 5, Dorval, QC H9P 1J3, Canada. E-mail: ron.mctaggart-cowan@ec.gc.ca

Abstract

Tropical cyclogenesis is generally considered to occur in regions devoid of baroclinic structures; however, an appreciable number of tropical cyclones (TCs) form in baroclinic environments each year. A global climatology of these baroclinically influenced TC developments is presented in this study. An objective classification strategy is developed that focuses on the characteristics of the environmental state rather than on properties of the vortex, thus allowing for a pointwise “development pathway” classification of reanalysis data. The resulting climatology shows that variability within basins arises primarily as a result of local surface thermal contrasts and the positions of time-mean features on the subtropical tropopause. The pathway analyses are sampled to generate a global climatology of 1948–2010 TC developments classified by baroclinic influence: nonbaroclinic (70%), low-level baroclinic (9%), trough induced (5%), weak tropical transition (11%), and strong tropical transition (5%). All basins other than the North Atlantic are dominated by nonbaroclinic events; however, there is extensive interbasin variability in secondary development pathways. Within each basin, subregions and time periods are identified in which the relative importance of the development pathways also differs. The efficiency of tropical cyclogenesis is found to be highly dependent on development pathway. The peak efficiency defined in the classification subspace straddles the nonbaroclinic/trough-induced boundary, suggesting that the optimal environment for TC development includes a baroclinic contribution from an upper-level disturbance. By assessing the global distribution of baroclinically influenced TC formations, this study identifies regions and pathways whose further study could yield improvements in our understanding of this important subset of TC developments.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-12-00186.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Ron McTaggart-Cowan, 2121 Trans-Canada Highway, Floor 5, Dorval, QC H9P 1J3, Canada. E-mail: ron.mctaggart-cowan@ec.gc.ca

Supplementary Materials

    • Supplemental Materials (PDF 1.06 MB)
Save
  • Appenzeller, C., and H. C. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570572.

  • Avila, L. A., 1991: Eastern North Pacific hurricane season of 1990. Mon. Wea. Rev., 119, 20342046.

  • Belkin, I. M., and A. L. Gordon, 1996: Southern ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., 101, 36753696.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1994: Midtropospheric closed cyclone formation over the southwestern United States, the eastern United States, and the Alps. Mon. Wea. Rev., 122, 791813.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and R. J. Pasch, 2010: Eastern North Pacific hurricane season of 2008. Mon. Wea. Rev., 138, 705721.

  • Boos, W. R., and K. A. Emanuel, 2009: Annual intensification of the Somali jet in a quasi-equilibrium framework: Observational composites. Quart. J. Roy. Meteor. Soc., 135, 319335.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 19792013.

  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037.

    • Search Google Scholar
    • Export Citation
  • Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 13971413.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790.

  • Challa, M., and R. L. Pfeffer, 1980: Effects of eddy fluxes of angular momentum on model hurricane development. J. Atmos. Sci., 37, 16031618.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., and L.-F. Chou, 1994: An investigation of cold vortices in the upper troposphere over the western North Pacific during the warm season. Mon. Wea. Rev., 122, 14361448.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., C.-C. Wang, and A.-H. Wang, 2007: A case study of subtropical frontogenesis during a blocking event. Mon. Wea. Rev., 135, 25882609.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, M.-C. Yen, and A. J. Clark, 2008: Are tropical cyclones less effectively formed by easterly waves in the western North Pacific than in the North Atlantic? Mon. Wea. Rev., 136, 45274540.

    • Search Google Scholar
    • Export Citation
  • Colton, D. E., 1973: Barotropic scale interactions in the tropical upper troposphere during the northern summer. J. Atmos. Sci., 30, 12871302.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 11001124.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747.

  • Davis, C., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Düing, W., and A. Leetmaa, 1980: Arabian Sea cooling: A preliminary heat budget. J. Phys. Oceanogr., 10, 307312.

  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365.

    • Search Google Scholar
    • Export Citation
  • Duong, T., 2007: ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Software, 21, 116.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., G. S. Lehmiller, and T. B. Kimberlain, 1996: Objective classification of Atlantic hurricanes. J. Climate, 9, 28802889.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Genesis and maintenance of “Mediterranean hurricanes.” Adv. Geosci., 2, 14.

  • Erickson, C. O., 1971: Diagnostic study of a tropical disturbance. Mon. Wea. Rev., 99, 6778.

  • Evan, A. T., and S. J. Camargo, 2011: A climatology of Arabian Sea cyclonic storms. J. Climate, 24, 140158.

  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080.

    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., and W. H. Schubert, 1999: The role of tropical cyclones in the formation of tropical upper-tropospheric troughs. J. Atmos. Sci., 56, 28912907.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362380.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1971: Mean monthly airflow at low levels over the western Indian Ocean. Geophys. Mem., 16, 153.

  • Fitzpatrick, P. J., J. A. Knaff, C. W. Landsea, and S. V. Finley, 1995: Documentation of a systematic bias in the aviation model’s forecast of the Atlantic tropical upper-tropospheric trough: Implications for tropical cyclone forecasting. Wea. Forecasting, 10, 433446.

    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 1989: Regularized discriminant analysis. J. Amer. Stat. Assoc., 84, 165175.

  • Gadgil, S., and P. V. Joseph, 2003: On breaks of the Indian monsoon. J. Earth Syst. Sci., 112, 529558.

  • Godfrey, J. S., 1996: The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101 (C5), 12 21712 237.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and west African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1985: Indian-Atlantic transfer of thermocline water at the Agulhas retroflection. Science, 227, 10301033.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1988: Environmental influences on tropical cyclones. Aust. Meteor. Mag., 36, 127139.

  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594.

  • Hamon, B. V., 1965: The East Australian current, 1960–1964. Deep-Sea Res. Oceanogr. Abstr., 12, 889921.

  • Hanley, D. E., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584.

    • Search Google Scholar
    • Export Citation
  • Hess, J. C., J. B. Elsner, and N. E. LaSeur, 1995: Improving seasonal hurricane predictions for the Atlantic basin. Wea. Forecasting, 10, 425432.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138.

  • Hoskins, B. J., M. McIntyre, and A. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009a: Synoptic and frontal scale influences on tropical transition events in the Atlantic basin. Part I: A six case survey. Mon. Wea. Rev., 137, 36263650.

    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009b: Synoptic and frontal scale influences on tropical transition events in the Atlantic basin. Part II: Tropical transition of Hurricane Karen. Mon. Wea. Rev., 137, 36263650.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472.

  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 31023136.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and H. F. Pierce, 2002: Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 130, 31003128.

    • Search Google Scholar
    • Export Citation
  • Kelley, W. E., and D. R. Mock, 1982: A diagnostic study of upper tropospheric cold lows over the western North Pacific. Mon. Wea. Rev., 110, 471480.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., H. von Storch, and H. van Loon, 1989: Origin of the South Pacific convergence zone. J. Climate, 2, 11851195.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., and M. A. Gan, 1981: Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus, 33, 538551.

  • Krishnamurti, T. N., and V. Wong, 1979: A planetary boundary-layer model for the Somali jet. J. Atmos. Sci., 36, 18951907.

  • Landsea, C. W., and Coauthors, 2004: The Atlantic Hurricane Database Re-Analysis Project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Lazarsfeld, P. F., and N. W. Henry, 1968: Latent Structure Analysis. Houghton Mifflin, 294 pp.

  • Lee, C. S., R. Edson, and W. M. Gray, 1989: Some large-scale characteristics associated with tropical cyclone development in the North Indian Ocean during FGGE. Mon. Wea. Rev., 117, 407426.

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418.

  • Leslie, L. M., 1980: Numerical modeling of the summer heat low of Australia. J. Appl. Meteor., 19, 381387.

  • Lu, R., C.-S. Ding, H. Ryu, Z. Lin, and H. Dong, 2007: Midlatitude westward propagating disturbances preceding intraseasonal oscillations of convection over the subtropical western North Pacific during summer. Geophys. Res. Lett., 34, L21702, doi:10.1029/2007GL031277.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 25762592.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and M. Sprenger, 2008: Dynamical tropopause variability and potential vorticity streams in the Northern Hemisphere —A climatological analysis. Adv. Atmos. Sci., 25, 367379.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and T. D. Keenan, 1982: Climatology of tropical cyclone genesis in the Australian region. J. Climatol., 2, 1333.

  • McTaggart-Cowan, R., L. F. Bosart, C. A. Davis, E. H. Atallah, J. R. Gyakum, and K. A. Emanuel, 2006: Analysis of Hurricane Catarina (2004). Mon. Wea. Rev., 134, 30293053.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., G. D. Deane, L. F. Bosart, C. A. Davis, and T. J. Galarneau Jr., 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708.

    • Search Google Scholar
    • Export Citation
  • Monk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 8093.

  • Montgomery, M. T., and L. J. Shapiro, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2005: Analysis of an idealized, three dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62, 27032725.

    • Search Google Scholar
    • Export Citation
  • Mozer, J. B., and J. A. Zehnder, 1996: Lee vorticity production by large-scale tropical mountain ranges. Part I: Eastern North Pacific tropical cyclogenesis. J. Atmos. Sci., 53, 521538.

    • Search Google Scholar
    • Export Citation
  • Nassor, A., and M. R. Jury, 1998: Intra-seasonal climate varibility of Madagascar. Part I: Mean summer conditions. Meteor. Atmos. Phys., 65, 3141.

    • Search Google Scholar
    • Export Citation
  • Ndarana, T., and D. W. Waugh, 2011: A climatology of Rossby wave breaking on the Southern Hemisphere tropopause. J. Atmos. Sci., 68, 798811.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and D. A. Gold, 2008: Dynamical diagnosis: A comparison of quasigeostrophy and Ertel potential vorticity. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting, Meteor. Monogr., No. 33, Amer. Meteor. Soc., 183–202.

  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334342.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Palastanga, V., P. J. van Leeuwen, M. W. Schouten, and P. M. de Ruijter, 2007: Flow structure and variability in the subtropical Indian Ocean: Instability of the south Indian Ocean countercurrent. J. Geophys. Res., 112, C01001, doi:10.1029/2005JC003395.

    • Search Google Scholar
    • Export Citation
  • Payne, B., and J. Methven, 2012: The role of baroclinic waves in the initiation of tropical cyclones across the southern Indian Ocean. Atmos. Sci. Lett., 13, 8894.

    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373.

    • Search Google Scholar
    • Export Citation
  • Ramsawamy, C., 1962: Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the subtropical westerly jet streams. Tellus, 14, 337349.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and C. A. Doswell III, 2005: A sensitivity study of hodograph-based methods for estimating supercell motion. Wea. Forecasting, 20, 954970.

    • Search Google Scholar
    • Export Citation
  • Rao, Y. P., 1976: Southwest monsoon. Meteorological Monograph: Synoptic Meteorology, No. 1, India Meteorological Department, 367 pp.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1948: On the formation of typhoons. J. Meteor., 5, 247264.

  • Ritchie, E. A., and G. J. Holland, 1993: On the interaction of two tropical cyclone scale vortices. II: Discrete vortex patches. Quart. J. Roy. Meteor. Soc., 119, 13631379.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396.

  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2011: Tropical cyclone structure and intensity change. Proc. Seventh Int. Workshop on Tropical Cyclones, WMO/TD-1561, Saint-Gilles-Les-Bains, La Réunion, France, World Meteorological Organization, 11–17.

  • Sadler, J. C., 1967: The tropical upper tropospheric trough as a secondary source of typhoons and a primary source of tradewind disturbances. Hawaii Institute of Geophysics Tech. Rep. 6712, 44 pp.

  • Sadler, J. C., 1975: The upper tropospheric circulation over the global tropics. University of Hawaii Department of Meteorology Tech. Rep. UHMET-75-05, 35 pp.

  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 12661278.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1978: Mid-season typhoon development and intensity change and the tropical upper tropospheric trough. Mon. Wea. Rev., 106, 11371152.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, K., and M. Takahashi, 2005: Cut off and weakening processes of an upper cold low. J. Meteor. Soc. Japan, 83, 817834.

  • Sato, N., K. Sakamoto, and M. Takahashi, 2005: An air mass with high potential vorticity preceding the formation of the Marcus Convergence Zone. Geophys. Res. Lett., 32, L17801, doi:10.1029/2005GL023572.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., and R. E. Hart, 2012: An examination of tropical cyclone position, intensity and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533475.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kaladis, and M. F. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kalidis, and K. I. Hodges, 2010: Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Climate, 23, 48234840.

    • Search Google Scholar
    • Export Citation
  • Shenoi, S. S. C., D. Shankar, and S. R. Shetye, 2002: Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res., 107, 3052, doi:10.1029/2000JC000679.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. Ritchie, J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., 1992: The south Indian Ocean current. J. Phys. Oceanogr., 22, 421430.

  • Todd, M., and R. Washington, 1999: Circulation anomalies associated with tropical-temperate troughs in southern Africa and the south West Indian Ocean. Climate Dyn., 15, 937951.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the southern oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653.

  • Ueda, H., and T. Yasunari, 1996: Maturing process of the summer monsoon over the western North Pacific—A coupled ocean/atmosphere system. J. Meteor. Soc. Japan, 74, 493508.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970.

  • Vincent, D. G., K. H. North, R. A. Valesco, and P. G. Ramsey, 1991: Precipitation rates in the tropics based on the Q1-budget method: 1 June 1984–31 May 1987. J. Climate, 4, 10701086.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Legaine, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2009: Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., W.-S. Kau, and M.-D. Chou, 2009: Summer monsoon onset in the subtropical western North Pacific. Geophys. Res. Lett., 36, L18810, doi:10.1029/2009GL040168.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 959 354 18
PDF Downloads 724 215 12