Assimilation of High-Resolution Tropical Cyclone Observations with an Ensemble Kalman Filter Using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 Vortex-Scale Analyses

Altuğ Aksoy Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Altuğ Aksoy in
Current site
Google Scholar
PubMed
Close
,
Sim D. Aberson NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Sim D. Aberson in
Current site
Google Scholar
PubMed
Close
,
Tomislava Vukicevic NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Tomislava Vukicevic in
Current site
Google Scholar
PubMed
Close
,
Kathryn J. Sellwood Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Kathryn J. Sellwood in
Current site
Google Scholar
PubMed
Close
,
Sylvie Lorsolo Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Sylvie Lorsolo in
Current site
Google Scholar
PubMed
Close
, and
Xuejin Zhang Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Xuejin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Hurricane Weather Research and Forecasting (HWRF) Ensemble Data Assimilation System (HEDAS) is developed to assimilate tropical cyclone inner-core observations for high-resolution vortex initialization. It is based on a serial implementation of the square root ensemble Kalman filter (EnKF). In this study, HWRF is used in an experimental configuration with horizontal grid spacing of 9 (3) km on the outer (inner) domain. HEDAS is applied to 83 cases from years 2008 to 2011. With the exception of two Hurricane Hilary (2011) cases in the eastern North Pacific basin, all cases are observed in the Atlantic basin. Observed storm intensity for these cases ranges from tropical depression to category-4 hurricane.

Overall, it is found that high-resolution tropical cyclone observations, when assimilated with an advanced data assimilation technique such as the EnKF, result in analyses of the primary circulation that are realistic in terms of intensity, wavenumber-0 radial structure, as well as wavenumber-1 azimuthal structure. Representing the secondary circulation in the analyses is found to be more challenging with systematic errors in the magnitude and depth of the low-level radial inflow. This is believed to result from a model bias in the experimental HWRF caused by the overdiffusive nature of the planetary boundary layer parameterization utilized. Thermodynamic deviations from the observed structure are believed to be caused by both an imbalance between the number of the kinematic and thermodynamic observations in general and the suboptimal ensemble covariances between kinematic and thermodynamic fields. Future plans are discussed to address these challenges.

Corresponding author address: Dr. Altuğ Aksoy, CIMAS, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: aaksoy@rsmas.miami.edu

Abstract

The Hurricane Weather Research and Forecasting (HWRF) Ensemble Data Assimilation System (HEDAS) is developed to assimilate tropical cyclone inner-core observations for high-resolution vortex initialization. It is based on a serial implementation of the square root ensemble Kalman filter (EnKF). In this study, HWRF is used in an experimental configuration with horizontal grid spacing of 9 (3) km on the outer (inner) domain. HEDAS is applied to 83 cases from years 2008 to 2011. With the exception of two Hurricane Hilary (2011) cases in the eastern North Pacific basin, all cases are observed in the Atlantic basin. Observed storm intensity for these cases ranges from tropical depression to category-4 hurricane.

Overall, it is found that high-resolution tropical cyclone observations, when assimilated with an advanced data assimilation technique such as the EnKF, result in analyses of the primary circulation that are realistic in terms of intensity, wavenumber-0 radial structure, as well as wavenumber-1 azimuthal structure. Representing the secondary circulation in the analyses is found to be more challenging with systematic errors in the magnitude and depth of the low-level radial inflow. This is believed to result from a model bias in the experimental HWRF caused by the overdiffusive nature of the planetary boundary layer parameterization utilized. Thermodynamic deviations from the observed structure are believed to be caused by both an imbalance between the number of the kinematic and thermodynamic observations in general and the suboptimal ensemble covariances between kinematic and thermodynamic fields. Future plans are discussed to address these challenges.

Corresponding author address: Dr. Altuğ Aksoy, CIMAS, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: aaksoy@rsmas.miami.edu
Save
  • Aberson, S. D., 2009: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 15361549.

  • Aberson, S. D., M. L. Black, R. A. Black, R. W. Burpee, J. J. Cione, C. W. Landsea, and F. D. Marks Jr., 2006: Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87, 10391055.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. Dowell, and C. Snyder, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., S. Lorsolo, T. Vukicevic, K. J. Sellwood, S. D. Aberson, and F. Zhang, 2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140, 18431862.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., S. G. Gopalakrishnan, S. A. Michelson, F. D. Marks, and M. T. Montgomery, 2012: Impact of physics representations in the HWRFX model on simulated hurricane structure and wind–pressure relationships. Mon. Wea. Rev., 140, 3278–3299.

  • Berg, R. J., and L. A. Avila, 2011: Atlantic hurricane season of 2009. Mon. Wea. Rev., 139, 10491069.

  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130, 825841.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and Coauthors, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283.

  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–442.

  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and Coauthors, 2002: An operational multiscale hurricane forecasting system. Mon. Wea. Rev., 130, 18301847.

  • Gopalakrishnan, S. G., N. Surgi, R. Tuleya, and Z. Janjić, 2006: NCEP’s two-way-interactive-moving-nest NMM-WRF modeling system for hurricane forecasting. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 7A.3. [Available online at https://ams.confex.com/ams/pdfpapers/107899.pdf.]

  • Gopalakrishnan, S. G., Q. Liu, T. Marchok, D. Sheinin, N. Surgi, R. Tuleya, R. Yablonsky, and X. Zhang, 2010: Hurricane Weather and Research and Forecasting (HWRF) model scientific documentation. NOAA/NCAR/Development Test Center, 75 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_final_2-2_cm.pdf.]

  • Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. Marks Jr., K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks, J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. J. Benjamin, 2011a: Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Wea. Rev., 139, 32433247.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, D. T. Kleist, M. Fiorino, and S. J. Benjamin, 2011b: Global ensemble predictions of 2009’s tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 668688.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropsonde. Bull. Amer. Meteor. Soc., 80, 407420.

  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 129, 11641178.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Lorsolo, S., and A. Aksoy, 2012: Wavenumber analysis of azimuthally distributed data: Assessing maximum allowable gap size. Mon. Wea. Rev., 140, 19451956.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginnis, T. Hara, and B. Thomas, 2007: A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135, 28692878.

    • Search Google Scholar
    • Export Citation
  • Moyer, A. C., J. L. Evans, and M. Powell, 2007: Comparison of observed gale radius statistics. J. Meteor. Atmos. Phys., 97, 4155.

  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 33613378.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77/78, 5364.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419.

  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729.

  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational Stepped Frequency Microwave Radiometer. Mon. Wea. Rev., 135, 30703085.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., A. Aksoy, P. Reasor, S. D. Aberson, K. J. Sellwood, and F. Marks, 2013: Joint impact of forecast tendency and state error biases in ensemble Kalman filter data assimilation of inner-core tropical cyclone observations. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008-2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., K.-S. Yeh, T. S. Quirino, S. G. Gopalakrishnan, F. D. Marks Jr., S. B. Goldenberg, and S. Aberson, 2011: HWRFx: Improving hurriance forecasts with high-resolution modeling. Comput. Sci. Eng., 13, 1321, doi:10.1109/MCSE.2010.121.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 741 388 29
PDF Downloads 170 36 6