Ensemble Data Assimilation to Characterize Surface-Layer Errors in Numerical Weather Prediction Models

J. P. Hacker Naval Postgraduate School, Monterey, California

Search for other papers by J. P. Hacker in
Current site
Google Scholar
PubMed
Close
and
W. M. Angevine Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by W. M. Angevine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Experiments with the single-column implementation of the Weather Research and Forecasting Model provide a basis for deducing land–atmosphere coupling errors in the model. Coupling occurs both through heat and moisture fluxes through the land–atmosphere interface and roughness sublayer, and turbulent heat, moisture, and momentum fluxes through the atmospheric surface layer. This work primarily addresses the turbulent fluxes, which are parameterized following the Monin–Obukhov similarity theory applied to the atmospheric surface layer. By combining ensemble data assimilation and parameter estimation, the model error can be characterized. Ensemble data assimilation of 2-m temperature and water vapor mixing ratio, and 10-m wind components, forces the model to follow observations during a month-long simulation for a column over the well-instrumented Atmospheric Radiation Measurement (ARM) Central Facility near Lamont, Oklahoma. One-hour errors in predicted observations are systematically small but nonzero, and the systematic errors measure bias as a function of local time of day. Analysis increments for state elements nearby (15 m AGL) can be too small or have the wrong sign, indicating systematically biased covariances and model error. Experiments using the ensemble filter to objectively estimate a parameter controlling the thermal land–atmosphere coupling show that the parameter adapts to offset the model errors, but that the errors cannot be eliminated. Results suggest either structural errors or further parametric errors that may be difficult to estimate. Experiments omitting atypical observations such as soil and flux measurements lead to qualitatively similar deductions, showing the potential for assimilating common in situ observations as an inexpensive framework for deducing and isolating model errors.

Corresponding author address: Joshua Hacker, Naval Postgraduate School, Department of Meteorology, 589 Dyer Road, Monterey, CA 93943. E-mail: hacker@nps.edu

Abstract

Experiments with the single-column implementation of the Weather Research and Forecasting Model provide a basis for deducing land–atmosphere coupling errors in the model. Coupling occurs both through heat and moisture fluxes through the land–atmosphere interface and roughness sublayer, and turbulent heat, moisture, and momentum fluxes through the atmospheric surface layer. This work primarily addresses the turbulent fluxes, which are parameterized following the Monin–Obukhov similarity theory applied to the atmospheric surface layer. By combining ensemble data assimilation and parameter estimation, the model error can be characterized. Ensemble data assimilation of 2-m temperature and water vapor mixing ratio, and 10-m wind components, forces the model to follow observations during a month-long simulation for a column over the well-instrumented Atmospheric Radiation Measurement (ARM) Central Facility near Lamont, Oklahoma. One-hour errors in predicted observations are systematically small but nonzero, and the systematic errors measure bias as a function of local time of day. Analysis increments for state elements nearby (15 m AGL) can be too small or have the wrong sign, indicating systematically biased covariances and model error. Experiments using the ensemble filter to objectively estimate a parameter controlling the thermal land–atmosphere coupling show that the parameter adapts to offset the model errors, but that the errors cannot be eliminated. Results suggest either structural errors or further parametric errors that may be difficult to estimate. Experiments omitting atypical observations such as soil and flux measurements lead to qualitatively similar deductions, showing the potential for assimilating common in situ observations as an inexpensive framework for deducing and isolating model errors.

Corresponding author address: Joshua Hacker, Naval Postgraduate School, Department of Meteorology, 589 Dyer Road, Monterey, CA 93943. E-mail: hacker@nps.edu
Save
  • Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The data assimilation research testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Barker, E. H., and T. L. Baxter, 1975: A note on the computation of atmospheric surface layer fluxes for use in numerical modeling. J. Appl. Meteor., 14, 620622.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtstag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1992: FIFE atmospheric boundary layer budget methods. J. Geophys. Res., 97 (D17), 18 52318 531.

  • Bond, D., 2005: Soil Water and Temperature System (SWATS) handbook. Atmospheric Radiation Measurement Climate Research Facility Handbook, 24 pp. [Available online at https://www.arm.gov/publications/tech_reports/handbooks/swats_handbook.pdf?id=15.]

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP Mesoscale Eta Model. Bound.-Layer Meteor., 85, 391421.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118.

  • Cheng, W. Y. Y., and W. R. Cotton, 2004: Sensitivity of a cloud-resolving simulation of the genesis of a mesoscale convective system to horizontal heterogeneities in soil moisture initialization. J. Hydrometeor., 5, 934958.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and A. M. Da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124, 269295.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land-surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model. J. Geophys. Res., 108D, 88518867.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, and J. McCaa, 1999: A comparison of three different modeling strategies for evaluating cloud and radiation parameterizations. Mon. Wea. Rev., 127, 19671984.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625.

  • Hacker, J. P., 2010: Spatial and temporal scales of boundary layer wind predictability in response to small-amplitude land surface uncertainty. J. Atmos. Sci., 67, 217–233.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and D. Rostkier-Edelstein, 2007: PBL state estimation with surface observations, a column model, and an ensemble filter. Mon. Wea. Rev., 135, 29582972.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., W. Angevine, and K. Arsenault, cited 2009: A description of the WRFv3.1 single-column model. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2009/presentations/5B-03.pdf.]

  • Holt, T. R., D. Noyogi, F. Chen, K. Manning, M. LeMone, and A. Qureshi, 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134, 113133.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. NCEP Tech. Rep. 437, 61 pp.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • LeMone, M., M. Tewari, F. Chen, J. Alfieri, and D. Niyogi, 2008: Evaluation of the Noah land surface model using data from a fair-weather IHOP_2002 day with heterogeneous surface fluxes. Mon. Wea. Rev., 136, 49154941.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Martin, M., M. Bell, and K. Nichols, 2002: Estimation of systematic error in an equatorial ocean model using data assimilation. Int. J. Numer. Methods Fluids, 40, 435444.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Toubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102D, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., 1963: Determination of stress from wind and temperature measurements. Quart. J. Roy. Meteor. Soc., 89, 8594.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A. S., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146.

    • Search Google Scholar
    • Export Citation
  • Rostkier-Edelstein, D., and J. P. Hacker, 2010: The roles of surface-observation ensemble assimilation and model complexity for nowcasting PBL profiles: A factor separation analysis. Wea. Forecasting, 25, 16701690.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. Peters-Lidard, S. Kumar, C. Alonge, and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. Peters-Lidard, and S. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766–786.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Steeneveld, G. J., L. F. Tolk, A. F. Moene, O. K. Hartogensis, W. Peters, and A. A. M. Holtslag, 2011: Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget. J. Geophys. Res., 116, D23114, doi:10.1029/2011JD016303.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. Bound.-Layer Meteor., 140, 177206, doi:10.1007/s10546-011-9611-7.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square-root Kalman filter. Mon. Wea. Rev., 136, 16301648.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initiation conditions. Mon. Wea. Rev., 132, 29542976.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., M. A. LeMone, F. Chen, and K. W. Manning, 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325.

    • Search Google Scholar
    • Export Citation
  • Weckworth, T., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and R. E. Dickinson, 1998: Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11, 537550.

  • Zhang, D.-L., and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157169.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution III, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Vol. 1, Air Pollution Theory and Simulation, Computational Mechanics Publications, 53–60.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 62 3
PDF Downloads 133 42 4