• Atkins, N. T., , M. L. Weisman, , and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 29102927.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , and S. G. Gaddy, 2001: Airborne pseudo-dual-Doppler analysis of a rear-inflow jet and deep convergence zone within a supercell thunderstorm. Mon. Wea. Rev., 129, 22702289.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1990: Parameterizations for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Climate, 3, 209217.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762772.

  • Chou, M.-D., , M. J. Suarez, , C.-H. Ho, , M. M.-H. Yan, , and K.-T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 202214.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., , K.-T. Lee, , S.-C. Tsay, , and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159169.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • Dowell, D. C., , and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm on 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125, 25622582.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., , and H. B. Bluestein, 2002: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670.

    • Search Google Scholar
    • Export Citation
  • Frame, J. W., , and P. M. Markowski, 2010: Numerical simulations of radiative cooling beneath the anvils of supercell thunderstorms. Mon. Wea. Rev., 138, 30243047.

    • Search Google Scholar
    • Export Citation
  • Frame, J. W., , J. L. Petters, , P. M. Markowski, , and J. Y. Harrington, 2009: An application of the tilted independent pixel approximation to cumulonimbus environments. Atmos. Res., 91, 127136.

    • Search Google Scholar
    • Export Citation
  • French, M. M., , H. B. Bluestein, , D. C. Dowell, , L. J. Wicker, , M. R. Kramar, , and A. L. Pazmany, 2008: High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell. Mon. Wea. Rev., 136, 49975016.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. K. Krueger, , and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 13101328.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Klemp, J. B., , and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430444.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 357377.

  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , and J. Y. Harrington, 2005: A simulation of a supercell thunderstorm with emulated radiative cooling beneath the anvil. J. Atmos. Sci., 62, 26072617.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , E. N. Rasmussen, , and J. M. Straka, 1998a: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , E. N. Rasmussen, , J. M. Straka, , and D. C. Dowell, 1998b: Observations of low-level baroclinity generated by anvil shadows. Mon. Wea. Rev., 126, 29422958.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. Y., , P. M. Markowski, , Y. P. Richardson, , and G. Bryan, 2011: Interactions between simulated supercell thunderstorms and dry boundary layer convection. Preprints, 14th Conf. on Mesoscale Processes/15th Conf. on Aviation, Range, and Aerospace Meteorology, Los Angeles, CA, Amer. Meteor. Soc., 7.3. [Available online at https://ams.confex.com/ams/14Meso15ARAM/webprogram/Paper190799.html.]

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251269.

  • Rasmussen, E. N., , S. Richardson, , J. M. Straka, , P. M. Markowski, , and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174191.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Tao, W.-K., , and J. Simpson, 1993: The Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Tao, W.-K., , J. Simpson, , and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235.

  • Tao, W.-K., , S. Lang, , J. Simpson, , C.-H. Sui, , B. Ferrier, , and M.-D. Chou, 1996: Mechanisms of cloud–radiation interaction in the Tropics and midlatitudes. J. Atmos. Sci., 53, 26242651.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 16931705.

    • Search Google Scholar
    • Export Citation
  • Varnai, T., , and R. Davies, 1999: Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal heterogeneity. J. Atmos. Sci., 56, 42064224.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670.

  • Weisman, M. L., , and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , J. B. Klemp, , and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., , M. Xue, , and K. K. Droegemeier, 1996: Numerical simulations of density currents in sheared environments within a vertically confined channel. J. Atmos. Sci., 53, 770786.

    • Search Google Scholar
    • Export Citation
  • Xue, M., 2000: Density currents in two-layer shear flows. Quart. J. Roy. Meteor. Soc., 126, 13011320.

  • Xue, M., , K. K. Droegemeier, , and V. Wong, 2000: The Advanced Regional Prediction System (ARPS): A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS): A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 9
PDF Downloads 63 63 9

Dynamical Influences of Anvil Shading on Simulated Supercell Thunderstorms

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

Numerical simulations of supercell thunderstorms including parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) model to investigate how low-level air temperature deficits within anvil shadows affect the simulated storms. The maximum temperature deficits within the modeled cloud shadows are 1.5–2.0 K, which is only about half that previously observed. Within the shadows, the loss of strong solar heating cools and stabilizes the near-surface layer, which suppresses vertical mixing and modifies the near-surface vertical wind shear. In a case of a stationary storm, the enhanced easterly shear present beneath the anvil leads to a thinning of the outflow layer and corresponding acceleration of the rear-flank gust front far ahead of the overlying updraft, weakening the low-level mesocyclone. It is further shown that the direct absorption and emission of radiation by clouds does not significantly affect the simulated supercells. Varying the time of day of model initialization does not prevent the simulated storms from weakening. This behavior is mirrored for storms that slowly move along the major axis of the anvil shadow. If the rear-flank gust front moves into the anvil shadow and the updraft moves normal to the shadow (i.e., northward movement of the updraft), cyclic periods of intensification and decay can result, although this result is likely highly dependent on the storm-relative wind profile. If the gust front does not advance into the shaded region (i.e., southward movement), or if the storm moves rapidly, the storm is relatively unaffected by anvil shading because the rear-flank gust front speed and outflow depth remain relatively unchanged.

Corresponding author address: Dr. Jeffrey Frame, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: frame@illinois.edu

Abstract

Numerical simulations of supercell thunderstorms including parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) model to investigate how low-level air temperature deficits within anvil shadows affect the simulated storms. The maximum temperature deficits within the modeled cloud shadows are 1.5–2.0 K, which is only about half that previously observed. Within the shadows, the loss of strong solar heating cools and stabilizes the near-surface layer, which suppresses vertical mixing and modifies the near-surface vertical wind shear. In a case of a stationary storm, the enhanced easterly shear present beneath the anvil leads to a thinning of the outflow layer and corresponding acceleration of the rear-flank gust front far ahead of the overlying updraft, weakening the low-level mesocyclone. It is further shown that the direct absorption and emission of radiation by clouds does not significantly affect the simulated supercells. Varying the time of day of model initialization does not prevent the simulated storms from weakening. This behavior is mirrored for storms that slowly move along the major axis of the anvil shadow. If the rear-flank gust front moves into the anvil shadow and the updraft moves normal to the shadow (i.e., northward movement of the updraft), cyclic periods of intensification and decay can result, although this result is likely highly dependent on the storm-relative wind profile. If the gust front does not advance into the shaded region (i.e., southward movement), or if the storm moves rapidly, the storm is relatively unaffected by anvil shading because the rear-flank gust front speed and outflow depth remain relatively unchanged.

Corresponding author address: Dr. Jeffrey Frame, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: frame@illinois.edu
Save