• Aksoy, A., , S. Lorsolo, , T. Vukicevic, , K. J. Sellwood, , S. D. Aberson, , and F. Zhang, 2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140, 18431862.

    • Search Google Scholar
    • Export Citation
  • Amarin, R. A., , W. L. Jones, , J. W. Johnson, , C. Ruf, , T. L. Miller, , and E. Uhlhorn, 2010: The Hurricane Imaging Radiometer wide swath simulation and wind speed retrievals. Preprints, Int. Geosciences and Remote Sensing Symp., Orlando, FL, Institute of Electrical and Electronics Engineers, 4290–4293.

  • Barker, D. M., , W. Huang, , Y.-R. Guo, , A. J. Bourgeois, , and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA's Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363.

    • Search Google Scholar
    • Export Citation
  • Brown, S., , B. Lambrigtsen, , A. Tanner, , J. Oswald, , D. Dawson, , and R. Denning, 2007: Observations of tropical cyclones with a 60, 118 and 183 GHz microwave sounder. Preprints, Int. Geoscience and Remote Sensing Symp., Barcelona, Spain, Institute of Electrical and Electronics Engineers, 3317–3320.

  • Cangialosi, J. P., , and J. L. Franklin, 2011: 2011 National Hurricane Center forecast verification report. NHC Rep., 76 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2011.pdf.]

  • Dong, J., , and M. Xue, 2013: Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling Hurricane Ike (2008). Quart. J. Roy. Meteor. Soc., 139 (671), 467487.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., , and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gentry, B., and Coauthors, 2007: Development of an airborne molecular direct detection Doppler lidar for tropospheric wind profiling. Proc. Lidar Remote Sensing for Environmental Monitoring, San Diego, CA, International Society for Optics and Photonics, U63–U68.

  • Heymsfield, G., , J. Carswell, , L. Li, , D. Schaubert, , J. Creticos, , M. Vega, , and W. Welch, 2008: Status of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). Proc. NASA Earth Science Technology Conf., College Park, MD, National Aeronautics and Space Administration, 5 pp. [Available online at http://esto.nasa.gov/conferences/estc2008/papers/Heymsfield_Gerald_B5P2.pdf.]

  • Hock, T., , and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420.

  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Landsea, C. W., , and J. L. Franklin, 2013: How “good” are the best tracks? Estimating uncertainty in the Atlantic hurricane database. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., , and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., , P. L. Houtekamer, , and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., , W.-G. Cheon, , and S.-Y. Hong, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., , and F. Zhang, 2011: Dynamics and structures of forecast error covariance in the core of a developing hurricane. J. Atmos. Sci., 68, 15861606.

    • Search Google Scholar
    • Export Citation
  • Reinhart, R. E., 1997: Radar for Meteorologists. Rinehart Publications, 428 pp.

  • Revercomb, H. E., and Coauthors, 2003: Applications of high spectral resolution FTIR observations demonstrated by radiometrically accurate ground-based AERI and Scanning HIS aircraft instruments. Proc. Multispectral and Hyperspectral Remote Sensing Instruments and Applications, Vol. 4897, Hangzhou, China, International Society for Optics and Photonics, 11–23.

  • Sippel, J. A., , and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778.

  • Tao, W.-K., , and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Weng, Y., , and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961.

  • Zhang, F., , C. Snyder, , and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Z. Meng, , and A. Aaksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722736.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Y. Weng, , J. A. Sippel, , Z. Meng, , and C. H. Bishop, 2009: Convection-permitting hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter: Humberto (2007). Mon. Wea. Rev., 137, 21052125.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Y. Weng, , J. F. Gamache, , and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., , and Y. Jin, 2008: High-resolution radar data assimilation for Hurricane Isabel (2003) at landfall. Bull. Amer. Meteor. Soc., 89, 13551372.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 3
PDF Downloads 13 13 3

Ensemble Kalman Filter Assimilation of Simulated HIWRAP Doppler Velocity Data in a Hurricane

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

This study utilizes ensemble Kalman filter (EnKF) observing system simulation experiments (OSSEs) to analyze the potential impact of assimilating radial velocity observations of hurricanes from the High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a new Doppler radar mounted on the NASA Global Hawk unmanned airborne system that flies at roughly 19-km altitude and has the benefit of a 25–30-h flight duration, which is 2–3 times that of conventional aircraft. This research is intended as a proof-of-concept study for future assimilation of real HIWRAP data. The most important result from this research is that HIWRAP data can potentially improve hurricane analyses and prediction. For example, by the end of a 12-h assimilation period, the analysis error is much lower than that in deterministic forecasts. As a result, subsequent forecasts initialized with the EnKF analyses also improve. Furthermore, analyses and forecasts clearly benefit more from a 12-h assimilation period than for shorter periods, which highlights a benefit of the Global Hawk's potentially long on-station times.

Corresponding author address: Dr. Jason A. Sippel, NASA GSFC, Code 612, Greenbelt, MD 20771. E-mail: jason.sippel@nasa.gov

Abstract

This study utilizes ensemble Kalman filter (EnKF) observing system simulation experiments (OSSEs) to analyze the potential impact of assimilating radial velocity observations of hurricanes from the High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a new Doppler radar mounted on the NASA Global Hawk unmanned airborne system that flies at roughly 19-km altitude and has the benefit of a 25–30-h flight duration, which is 2–3 times that of conventional aircraft. This research is intended as a proof-of-concept study for future assimilation of real HIWRAP data. The most important result from this research is that HIWRAP data can potentially improve hurricane analyses and prediction. For example, by the end of a 12-h assimilation period, the analysis error is much lower than that in deterministic forecasts. As a result, subsequent forecasts initialized with the EnKF analyses also improve. Furthermore, analyses and forecasts clearly benefit more from a 12-h assimilation period than for shorter periods, which highlights a benefit of the Global Hawk's potentially long on-station times.

Corresponding author address: Dr. Jason A. Sippel, NASA GSFC, Code 612, Greenbelt, MD 20771. E-mail: jason.sippel@nasa.gov
Save