• Bodine, D., , P. L. Heinselman, , B. L. Cheong, , R. D. Palmer, , and D. Michaud, 2010: A case study on the impact of moisture variability on convection initiation using radar refractivity retrievals. J. Appl. Meteor. Climatol., 49, 17661778.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., , and R. M. Errico, 1995: Mesoscale predictability and the spectrum of optimal perturbations. J. Atmos. Sci., 52, 34753500.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2010: For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part II: On the observation signal from different sensors. Mon. Wea. Rev., 138, 256264.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and J. Sun, 2010: For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part I: On the propagation of initial condition errors and their implications for data assimilation. Mon. Wea. Rev., 138, 242255.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , C. Frush, , I. Zawadzki, , and A. Kilambi, 1997: On the extraction of near-surface index of refraction using radar phase measurements from ground targets. J. Atmos. Oceanic Technol., 14, 978987.

    • Search Google Scholar
    • Export Citation
  • Gao, J.-D., , M. Xue, , K. Brewster, , and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469.

    • Search Google Scholar
    • Export Citation
  • Gasperoni, N. A., , M. Xue, , R. D. Palmer, , and J. Gao, 2013: Sensitivity of convective initiation prediction to near-surface moisture when assimilating radar refractivity: Impact tests using OSSEs. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Ge, G., , J. Gao, , K. Brewster, , and M. Xue, 2010: Impacts of beam broadening and earth curvature on storm-scale 3D variational data assimilation of radial velocity with two Doppler radars. J. Atmos. Oceanic Technol., 27, 617636.

    • Search Google Scholar
    • Export Citation
  • Ge, G., , J. Gao, , and M. Xue, 2012: Diagnostic pressure equation as a weak constraint in a storm-scale three dimensional variational radar data assimilation system. J. Atmos. Oceanic Technol., 29, 10751092.

    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., , and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34, 315.

    • Search Google Scholar
    • Export Citation
  • Ho, S., , Y. Kuo, , and S. Sokolovskiy, 2007: Improvement of the temperature and moisture retrievals in the lower troposphere using AIRS and GPS radio occultation measurements. J. Atmos. Oceanic Technol., 24, 17261739.

    • Search Google Scholar
    • Export Citation
  • Hu, M., , and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507525.

    • Search Google Scholar
    • Export Citation
  • Hu, M., , M. Xue, , and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698.

    • Search Google Scholar
    • Export Citation
  • Hu, M., , M. Xue, , J. Gao, , and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699721.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Liu, H., , and M. Xue, 2006: Retrieval of moisture from slant-path water vapor observations of a hypothetical GPS network using a three-dimensional variational scheme with anisotropic background error. Mon. Wea. Rev., 134, 933949.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , M. Xue, , R. J. Purser, , and D. F. Parrish, 2007: Retrieval of moisture from simulated GPS slant-path water vapor observations using 3DVAR with anisotropic recursive filters. Mon. Wea. Rev., 135, 15061521.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 11771194.

  • Nascimento, E. L., , and K. K. Droegemeier, 2006: Dynamic adjustment in a numerically simulated mesoscale convective system: Impact of the velocity field. J. Atmos. Sci., 63, 22462268.

    • Search Google Scholar
    • Export Citation
  • Park, S. K., , and K. K. Droegemeier, 2000: Sensitivity analysis of a 3D convective storm: Implications for variational data assimilation and forecast error. Mon. Wea. Rev., 128, 140159.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., , and R. McQuiqq, 1982: A successive correction analysis scheme using recursive numerical filters. British Meteorological Office Tech. Note 154, 17 pp.

  • Ray, P. S., , B. C. Johnson, , K. W. Johnson, , J. S. Bradberry, , J. J. Stephens, , K. K. Wagner, , R. B. Wilhelmson, , and J. B. Klemp, 1981: The morphology of severe tornadic storms on 20 May 1977. J. Atmos. Sci., 38, 16431663.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., , M. Xue, , A. Shapiro, , K. Brewster, , and J. Gao, 2011: The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224246.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., , C. K. Potvin, , and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 20892106.

    • Search Google Scholar
    • Export Citation
  • Snook, N., , M. Xue, , and Y. Jung, 2011: Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Wea. Rev., 139, 34463468.

    • Search Google Scholar
    • Export Citation
  • Snook, N., , M. Xue, , and Y. Jung, 2012: Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data. Mon. Wea. Rev., 140, 21262146.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793813.

  • Sun, J., , and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661.

    • Search Google Scholar
    • Export Citation
  • Tong, M., , and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S., , P. Nutter, , E. Kalnay, , S. K. Park, , and K. Droegemeier, 1999: The relative importance of different data fields in a numerically simulated convective storm. Preprints, Eighth Conf. on Mesoscale Processes, Boulder, CO, Amer. Meteor. Soc., 310–315.

  • Weygandt, S., , A. Shapiro, , and K. K. Droegemeier, 2002a: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130, 433453.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S., , A. Shapiro, , and K. K. Droegemeier, 2002b: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130, 454476.

    • Search Google Scholar
    • Export Citation
  • Wolfe, D. E., , and S. I. Gutman, 2000: Developing an operational, surface-based, GPS, water vapor observing system for NOAA: Network design and results. J. Atmos. Oceanic Technol., 17, 426440.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , K. K. Droegemeier, , and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143166.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , D.-H. Wang, , J.-D. Gao, , K. Brewster, , and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , M. Tong, , and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating impact of data from radar networks on thunderstorm analysis and forecast. J. Atmos. Oceanic Technol., 23, 4666.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , C. Snyder, , and J. Sun, 2004: Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhao, K., , and M. Xue, 2009: Assimilation of coastal Doppler radar data with the ARPS 3DVAR and cloud analysis for the prediction of Hurricane Ike (2008). Geophys. Res. Lett., 36, L12803, doi:10.1029/2009GL038658.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 7
PDF Downloads 25 25 3

Impacts of Assimilating Measurements of Different State Variables with a Simulated Supercell Storm and Three-Dimensional Variational Method

View More View Less
  • 1 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 2 National Severe Storm Laboratory, Norman, Oklahoma
  • | 3 Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

This paper investigates the impacts of assimilating measurements of different state variables, which can be potentially available from various observational platforms, on the cycled analysis and short-range forecast of supercell thunderstorms by performing a set of observing system simulation experiments (OSSEs) using a storm-scale three-dimensional variational data assimilation (3DVAR) method. The control experiments assimilate measurements every 5 min for 90 min. It is found that the assimilation of horizontal wind can reconstruct the storm structure rather accurately. The assimilation of vertical velocity , potential temperature , or water vapor can partially rebuild the thermodynamic and precipitation fields but poorly retrieves the wind fields. The assimilation of rainwater mixing ratio can build up the precipitation fields together with a reasonable cold pool but is unable to properly recover the wind fields. Overall, data have the greatest impact, while have the second largest impact. The impact of is the smallest. The impact of assimilation frequency is examined by comparing results using 1-, 5-, or 10-min assimilation intervals. When is assimilated every 5 or 10 min, the analysis quality can be further improved by the incorporation of additional types of observations. When are assimilated every minute, the benefit from additional types of observations is negligible, except for . It is also found that for , , and measurements, more frequent assimilation leads to more accurate analyses. For and , a 1-min assimilation interval does not produce a better analysis than a 5-min interval.

Corresponding author address: Dr. Guoqing Ge, Center for Analysis and Prediction of Storms, Suite 2500, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: geguoqing@ou.edu

Abstract

This paper investigates the impacts of assimilating measurements of different state variables, which can be potentially available from various observational platforms, on the cycled analysis and short-range forecast of supercell thunderstorms by performing a set of observing system simulation experiments (OSSEs) using a storm-scale three-dimensional variational data assimilation (3DVAR) method. The control experiments assimilate measurements every 5 min for 90 min. It is found that the assimilation of horizontal wind can reconstruct the storm structure rather accurately. The assimilation of vertical velocity , potential temperature , or water vapor can partially rebuild the thermodynamic and precipitation fields but poorly retrieves the wind fields. The assimilation of rainwater mixing ratio can build up the precipitation fields together with a reasonable cold pool but is unable to properly recover the wind fields. Overall, data have the greatest impact, while have the second largest impact. The impact of is the smallest. The impact of assimilation frequency is examined by comparing results using 1-, 5-, or 10-min assimilation intervals. When is assimilated every 5 or 10 min, the analysis quality can be further improved by the incorporation of additional types of observations. When are assimilated every minute, the benefit from additional types of observations is negligible, except for . It is also found that for , , and measurements, more frequent assimilation leads to more accurate analyses. For and , a 1-min assimilation interval does not produce a better analysis than a 5-min interval.

Corresponding author address: Dr. Guoqing Ge, Center for Analysis and Prediction of Storms, Suite 2500, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: geguoqing@ou.edu
Save