• Barnes, G. M., , and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 23482368.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., , E. J. Zipser, , D. Jorgensen, , and F. Marks Jr., 1983: Mesoscale and convective structure of a rainband. J. Atmos. Sci., 40, 21252137.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957.

  • DeMaria, M., , and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , M. Mainelli, , L. K. Shay, , J. A. Knaff, , and J. Kaplan, 2005: Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., , and D. W. Waugh, 1992: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, 4A, 17371744.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026.

  • Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152.

  • Hawkins, J. D., , and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Preprints, 26th Conf. on Hurricane and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., P1.7. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm.]

  • Hawkins, J. D., , and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 14B.1. [Available online at https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138300.htm.]

  • Hawkins, J. D., , and C. Velden, 2011: Supporting meteorological field experiment missions and post-mission analysis with satellite digital data and products. Bull. Amer. Meteor. Soc., 92, 10091022.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., , T. F. Lee, , F. J. Turk, , C. Sampson, , J. Kent, , and K. Richardson, 2001: Real-time Internet distribution of satellite products for tropical cyclone reconnaissance. Bull. Amer. Meteor. Soc., 82, 567578.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., , M. Helveston, , T. F. Lee, , F. J. Turk, , K. Richardson, , C. Sampson, , J. Kent, , and R. Wade, 2006: Tropical cyclone multiple eyewall characteristics. Preprints, 27th Conf. on Hurricane and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.1. [Available online at http://ams.confex.com/ams/27Hurricanes/techprogram/paper_108864.htm.]

  • Hence, D. A., , and R. A. Houze Jr., 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by TRMM precipitation radar. J. Atmos. Sci., 69, 10211036.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., , M.-T. Montgomery, , and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., , M. D. Goldbrig, , R. M. Zehr, , M. DeMaria, , J. F. W. Purdom, , C. S. Veldon, , N. C. Grodg, , and S. J. Kusselson, 2000: Satellite analysis of tropical cyclones using Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 12411259.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , J. P. Kossin, , and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18, 204223.

  • Knaff, J. A., , C. R. Sampson, , and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , W. H. Schubert, , and M. T. Montgomery, 2000: Unstable interaction between a hurricane's primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 38933917.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , G. T.-J. Chen, , and C.-H. Lin, 2000: Merger of tropical cyclones Zeb and Alex. Mon. Wea. Rev., 128, 29672975.

  • Kuo, H.-C., , L.-Y. Lin, , C.-P. Chang, , and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 27222734.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , W. H. Schubert, , C.-L. Tsai, , and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , C.-P. Chang, , Y.-T. Yang, , and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , C.-P. Chang, , and C.-H. Liu, 2012: Convection and rapid filamentation in Typhoon Sinlaku during TCS-08/T-PARC. Mon. Wea. Rev., 140, 28062817.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898.

    • Search Google Scholar
    • Export Citation
  • McNoldy, B. D., 2004: Triple eyewall in Hurricane Juliette. Bull. Amer. Meteor. Soc., 85, 16631666.

  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricane. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., , R. K. Taft, , J. L. Vigh, , B. D. McNoldy, , and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. J. Adv. Model. Earth Syst., 4, M08001 , doi:10.1029/2011MS000104.

    • Search Google Scholar
    • Export Citation
  • Nong, S., , and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricane. Quart. J. Roy. Meteor. Soc., 129, 33233338.

    • Search Google Scholar
    • Export Citation
  • Olander, T. L., , and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298.

    • Search Google Scholar
    • Export Citation
  • Peng, J., , T. Li, , and M. S. Peng, 2009: Formation of tropical cyclone concentric eyewalls by wave-mean flow interactions. Adv. Geosci., 10, 5771.

    • Search Google Scholar
    • Export Citation
  • Poe, G., 1990: Optimum interpolation of imaging microwave radiometer data. IEEE Trans. Geosci. Remote Sens., 28, 800810.

  • Qiu, X., , Z.-M. Tan, , and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , W. H. Schubert, , B. D. McNoldy, , and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , W. H. Schubert, , and J. P. Kossin, 2008: Some dynamical aspects of hurricane eyewall replacement cycles. Quart. J. Roy. Meteor. Soc., 134, 583593.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., , and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123, 35023517.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , C. M. Rozoff, , J. L. Vigh, , B. D. McNoldy, , and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595605.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., , J. P. Kossin, , and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , H. M. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., , and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi:10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., , J. A. Knaff, , and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426.

  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84 (C6), 31733183.

  • Willoughby, H. E., , and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543549.

  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., , and C. S. Velden, 2010: Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. J. Appl. Meteor. Climatol., 49, 20132034.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., , and B. Wang, 2009: From concentric eyewall to annular hurricane: A numerical study with the cloud-resolving WRF model. Geophys. Res. Lett., 36, L03802, doi:10.1029/2008GL036854.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., , and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 160 20
PDF Downloads 117 117 9

Structural and Intensity Changes of Concentric Eyewall Typhoons in the Western North Pacific Basin

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 2 Naval Research Laboratory, Monterey, California
© Get Permissions
Restricted access

Abstract

An objective method is developed to identify concentric eyewalls (CEs) for typhoons using passive microwave satellite imagery from 1997 to 2011 in the western North Pacific basin. Three CE types are identified: a CE with an eyewall replacement cycle (ERC; 37 cases), a CE with no replacement cycle (NRC; 17 cases), and a CE that is maintained for an extended period (CEM; 16 cases). The inner eyewall (outer eyewall) of the ERC (NRC) type dissipates within 20 h after CE formation. The CEM type has its CE structure maintained for more than 20 h (mean duration time is 31 h). Structural and intensity changes of CE typhoons are demonstrated using a T–Vmax diagram (where T is the brightness temperature and Vmax is the best-track estimated intensity) for a time sequence of the intensity and convective activity (CA) relationship. While the intensity of typhoons in the ERC and CEM cases weakens after CE formation, the CA is maintained or increases. In contrast, the CA weakens in the NRC cases. The NRC (CEM) cases typically have fast (slow) northward translational speeds and encounter large (small) vertical shear and low (high) sea surface temperatures. The CEM cases have a relatively high intensity (63 m s−1), and the moat size (61 km) and outer eyewall width (70 km) are approximately 50% larger than the other two categories. Both the internal dynamics and environmental conditions are important in the CEM cases, while the NRC cases are heavily influenced by the environment. The ERC cases may be dominated by the internal dynamics because of more uniform environmental conditions.

Corresponding author address: Hung-Chi Kuo, Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan. E-mail: kuo@as.ntu.edu.tw

Abstract

An objective method is developed to identify concentric eyewalls (CEs) for typhoons using passive microwave satellite imagery from 1997 to 2011 in the western North Pacific basin. Three CE types are identified: a CE with an eyewall replacement cycle (ERC; 37 cases), a CE with no replacement cycle (NRC; 17 cases), and a CE that is maintained for an extended period (CEM; 16 cases). The inner eyewall (outer eyewall) of the ERC (NRC) type dissipates within 20 h after CE formation. The CEM type has its CE structure maintained for more than 20 h (mean duration time is 31 h). Structural and intensity changes of CE typhoons are demonstrated using a T–Vmax diagram (where T is the brightness temperature and Vmax is the best-track estimated intensity) for a time sequence of the intensity and convective activity (CA) relationship. While the intensity of typhoons in the ERC and CEM cases weakens after CE formation, the CA is maintained or increases. In contrast, the CA weakens in the NRC cases. The NRC (CEM) cases typically have fast (slow) northward translational speeds and encounter large (small) vertical shear and low (high) sea surface temperatures. The CEM cases have a relatively high intensity (63 m s−1), and the moat size (61 km) and outer eyewall width (70 km) are approximately 50% larger than the other two categories. Both the internal dynamics and environmental conditions are important in the CEM cases, while the NRC cases are heavily influenced by the environment. The ERC cases may be dominated by the internal dynamics because of more uniform environmental conditions.

Corresponding author address: Hung-Chi Kuo, Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan. E-mail: kuo@as.ntu.edu.tw
Save