• Bao, J.-W., , S. A. Michelson, , P. J. Neiman, , F. M. Ralph, , and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., , and A. Melsom, 2002: Is there a link between the unusually wet autumns in southeastern Norway and sea-surface temperature anomalies? Climate Res., 23, 6779.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1919: On the structure of moving cyclones. Mon. Wea. Rev., 47, 9599.

  • Bosilovich, M. G., , and S. D. Schubert, 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3, 149165.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., , S. E. Belcher, , and R. S. Plant, 2011: Moisture transport in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 360373.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik H. Palmén Memorial Volume, C. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509.

  • Cattiaux, J., , R. Vautard, , and P. Yiou, 2009: Origins of the extremely warm European fall of 2006. Geophys. Res. Lett., 36, L06713, doi:10.1029/2009GL037339.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1984: Modeling evapotranspiration for 3-dimensional global climate models. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 58–72.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., , A. Stohl, , H. Wernli, , P. James, , C. Forster, , and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251.

    • Search Google Scholar
    • Export Citation
  • Joussaume, J., , R. Sadourny, , and J. Jouzel, 1984: A general circulation model of water isotope cycles in the atmosphere. Nature, 311, 2429.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Knippertz, P., , and J. E. Martin, 2007: A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States. Wea. Forecasting, 22, 125144.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., , and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003.

    • Search Google Scholar
    • Export Citation
  • Koster, R., , J. Jouzel, , R. Souzzo, , G. Russell, , W. Broecker, , D. Rind, , and P. Eagleson, 1986: Global sources of local precipitation as determined by the NASA/GISS GCM. Geophys. Res. Lett., 13, 121124.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., , R. P. Allan, , E. F. Wood, , G. Villarini, , D. J. Brayshaw, , and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., , M. A. Liniger, , A. Menzel, , N. Estrella, , P. M. Della-Marta, , C. Pfister, , T. Rutishauser, , and E. Xoplaki, 2007: Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophys. Res. Lett., 34, L12704, doi:10.1029/2007GL029951.

    • Search Google Scholar
    • Export Citation
  • Majewski, D., 1991: The Europa-Modell (EM) of the Deutscher Wetterdienst. Proc. Seminar on Numerical Methods in Atmospheric Models, Vol. 2, Reading, United Kingdom, ECMWF, 147–191.

  • Meteorologisk Institutt, 2007: Vaeret i norge, klimatologisk manedsoversikt desember 2006. Norwegian Meteorological Institute Public Records 12/2006, 18 pp.

  • Neiman, P. J., , F. M. Ralph, , G. A. Wick, , Y.-H. Kuo, , T.-K. Wee, , Z. Ma, , G. H. Taylor, , and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , L. J. Schick, , F. M. Ralph, , M. Hughes, , and G. A. Wick, 2010: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., , N. E. Newell, , Y. Zhu, , and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404.

  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1971: The observed annual cycle in the meridional transport of atmospheric energy. J. Atmos. Sci., 28, 325339.

  • Osborn, T. J., , K. R. Briffa, , S. F. B. Tett, , P. D. Jones, , and R. M. Trigo, 1999: Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Climate Dyn., 15, 685702.

    • Search Google Scholar
    • Export Citation
  • Purvis, R., and Coauthors, 2003: Rapid uplift of nonmethane hydrocarbons in a cold front over central Europe. J. Geophys. Res., 108, 4224, doi:10.1029/2002JD002521.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , G. A. Wick, , S. I. Gutman, , M. D. Dettinger, , D. R. Cayan, , and A. B. White, 2006: Flooding on California's Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , G. N. Kiladis, , and K. Weickmann, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189.

    • Search Google Scholar
    • Export Citation
  • Roiger, A., and Coauthors, 2011: In situ observation of Asian pollution transported into the Arctic lowermost stratosphere. Atmos. Chem. Phys., 11, 10 97510 994, doi:10.5194/acp-11-10975-2011.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., , and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446.

    • Search Google Scholar
    • Export Citation
  • Schär, C., , D. Lüthi, , U. Beyerle, , and E. Heise, 1999: The soil precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., , S. L. Gray, , and S. E. Belcher, 2008: Boundary-layer ventilation by baroclinic life cycles. Quart. J. Roy. Meteor. Soc., 134, 14091424, doi:10.1002/qj.293.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 2006: Multidimensional positive definite advection transport algorithm: An overview. Int. J. Numer. Methods Fluids, 50, 11231144.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., 2006: Tropospheric transport of water vapor: Lagrangian and Eulerian perspectives. Ph.D. dissertation, Swiss Federal Institute of Technology, 230 pp.

  • Sodemann, H., , H. Wernli, , and C. Schwierz, 2009: Sources of water vapor contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model. Quart. J. Roy. Meteor. Soc., 135, 205223.

    • Search Google Scholar
    • Export Citation
  • Steensen, B. M., , H. Ólafsson, , and M. O. Jonassen, 2011: An extreme precipitation event in central Norway. Tellus, 63, 675686.

  • Stohl, A., , C. Forster, , and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., , B. Hoskins, , and M. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 23662387.

  • Trenberth, K. E., , and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14, 213231.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706.

    • Search Google Scholar
    • Export Citation
  • Winschall, A., 2012: Evaporative moisture sources for heavy precipitation events. Ph.D. dissertation, Swiss Federal Institute of Technology, 152 pp.

  • Winschall, A., , S. Pfahl, , H. Sodemann, , and H. Wernli, 2012: Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Quart. J. Roy. Meteor. Soc., 138, 12451258, doi:10.1002/qj.987.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., , and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 268 49
PDF Downloads 222 222 34

Moisture Origin and Meridional Transport in Atmospheric Rivers and Their Association with Multiple Cyclones

View More View Less
  • 1 NILU, Kjeller, Norway, and Institute for Atmospheric and Climate Science, ETH, Zürich, Switzerland
  • | 2 NILU, Kjeller, Norway
© Get Permissions
Restricted access

Abstract

During December 2006 many cyclones traveled across the North Atlantic, causing temperature and precipitation in Norway to be well above average. Large excursions of high vertically integrated water vapor, often referred to as atmospheric rivers, reached from the subtropics to high latitudes, inducing precipitation over western Scandinavia. The sources and transport of atmospheric water vapor in the North Atlantic storm track during that month are examined by means of a mesoscale model fitted with water vapor tracers. Decomposition of the modeled total water vapor field into numerical water vapor tracers tagged by evaporation latitude shows that when an atmospheric river was present, a higher fraction of water vapor from remote, southerly source regions caused more intense precipitation. The tracer transport analysis revealed that the atmospheric rivers were composed of a sequence of meridional excursions of water vapor, in close correspondence with the upper-level flow configuration. In cyclone cores, fast turnover of water vapor by evaporation and condensation were identified, leading to a rapid assimilation of water from the underlying ocean surface. In the regions of long-range transport, water vapor tracers from the southern midlatitudes and subtropics dominated over local contributions. By advection of water vapor along their trailing cold fronts cyclones were reinforcing the atmospheric rivers. At the same time the warm conveyor belt circulation was feeding off the atmospheric rivers by large-scale ascent and precipitation. Pronounced atmospheric rivers could persist in the domain throughout more than one cyclone's life cycle. These findings emphasize the interrelation between midlatitude cyclones and atmospheric rivers but also their distinction from the warm conveyor belt airstream.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-12-00256.s1.

Corresponding author address: Harald Sodemann, Institute for Atmospheric and Climate Science, Universitätsstrasse 16, 8092 Zürich, Switzerland. E-mail: harald.sodemann@env.ethz.ch

Abstract

During December 2006 many cyclones traveled across the North Atlantic, causing temperature and precipitation in Norway to be well above average. Large excursions of high vertically integrated water vapor, often referred to as atmospheric rivers, reached from the subtropics to high latitudes, inducing precipitation over western Scandinavia. The sources and transport of atmospheric water vapor in the North Atlantic storm track during that month are examined by means of a mesoscale model fitted with water vapor tracers. Decomposition of the modeled total water vapor field into numerical water vapor tracers tagged by evaporation latitude shows that when an atmospheric river was present, a higher fraction of water vapor from remote, southerly source regions caused more intense precipitation. The tracer transport analysis revealed that the atmospheric rivers were composed of a sequence of meridional excursions of water vapor, in close correspondence with the upper-level flow configuration. In cyclone cores, fast turnover of water vapor by evaporation and condensation were identified, leading to a rapid assimilation of water from the underlying ocean surface. In the regions of long-range transport, water vapor tracers from the southern midlatitudes and subtropics dominated over local contributions. By advection of water vapor along their trailing cold fronts cyclones were reinforcing the atmospheric rivers. At the same time the warm conveyor belt circulation was feeding off the atmospheric rivers by large-scale ascent and precipitation. Pronounced atmospheric rivers could persist in the domain throughout more than one cyclone's life cycle. These findings emphasize the interrelation between midlatitude cyclones and atmospheric rivers but also their distinction from the warm conveyor belt airstream.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-12-00256.s1.

Corresponding author address: Harald Sodemann, Institute for Atmospheric and Climate Science, Universitätsstrasse 16, 8092 Zürich, Switzerland. E-mail: harald.sodemann@env.ethz.ch

Supplementary Materials

    • Supplemental Materials (ZIP 86.75 MB)
Save