Characteristics of the RAW-Filtered Leapfrog Time-Stepping Scheme in the Ocean General Circulation Model

Chih-Chieh Young Department of Atmospheric Sciences, National Taiwan University, and Research Center for Environmental Changes, Academia Sinica, Taipai, Taiwan

Search for other papers by Chih-Chieh Young in
Current site
Google Scholar
PubMed
Close
,
Yu-Chiao Liang Department of Atmospheric Sciences, National Taiwan University, Taipai, Taiwan

Search for other papers by Yu-Chiao Liang in
Current site
Google Scholar
PubMed
Close
,
Yu-Heng Tseng Department of Atmospheric Sciences, National Taiwan University, Taipai, Taiwan

Search for other papers by Yu-Heng Tseng in
Current site
Google Scholar
PubMed
Close
, and
Chun-Hoe Chow Research Center for Environmental Changes, Academia Sinica, Taipai, Taiwan

Search for other papers by Chun-Hoe Chow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Robert–Asselin–Williams (RAW) filtered leapfrog scheme is implemented and tested in the Taiwan multiscale community ocean model (TIMCOM). The characteristics of the RAW filter are carefully examined through two benchmark tests (the classical model problem-oscillation equation with further consideration of the dissipation effect, and the 1D linearized shallow-water equations). Particularly, the effect of the RAW filter upon the 2Δx wave instability due to spatial truncation errors is addressed. TIMCOM is then applied to simulate the coastally trapped internal Kelvin waves and global ocean circulations, showing the practical improvement over the Robert–Asselin (RA) filter in the short- and long-term model integrations. The large mean differences in some major current systems suggest the potential impacts on the oceanic instability where the numerical dissipation may interfere with the physical one. The characteristic analysis and model results here indicate the significant advantage of the RAW-filtered leapfrog time-stepping scheme for accurate ocean modeling.

Current affiliation: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Yu-Heng Tseng, Climate and Global Dynamics Division, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: ytseng@ucar.edu

Abstract

The Robert–Asselin–Williams (RAW) filtered leapfrog scheme is implemented and tested in the Taiwan multiscale community ocean model (TIMCOM). The characteristics of the RAW filter are carefully examined through two benchmark tests (the classical model problem-oscillation equation with further consideration of the dissipation effect, and the 1D linearized shallow-water equations). Particularly, the effect of the RAW filter upon the 2Δx wave instability due to spatial truncation errors is addressed. TIMCOM is then applied to simulate the coastally trapped internal Kelvin waves and global ocean circulations, showing the practical improvement over the Robert–Asselin (RA) filter in the short- and long-term model integrations. The large mean differences in some major current systems suggest the potential impacts on the oceanic instability where the numerical dissipation may interfere with the physical one. The characteristic analysis and model results here indicate the significant advantage of the RAW-filtered leapfrog time-stepping scheme for accurate ocean modeling.

Current affiliation: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Yu-Heng Tseng, Climate and Global Dynamics Division, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: ytseng@ucar.edu
Save
  • Amezcua, J., E. Kalnay, and P. D. Williams, 2011: The effects of the RAW filter on the climatology and forecast skill of the SPEEDY model. Mon. Wea. Rev., 139, 608619.

    • Search Google Scholar
    • Export Citation
  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487490.

  • Beal, L. M., and Coauthors, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436.

  • Beletsky, D., W. P. O’Connor, D. J. Schwab, and D. E. Dietrich, 1997: Numerical simulation of internal Kelvin waves and coastal upwelling fronts. J. Phys. Oceanogr., 27, 11971215.

    • Search Google Scholar
    • Export Citation
  • Bennett, J. R., 1977: A three-dimensional model of Lake Ontario’s summer circulation. I: Comparison with observations. J. Phys. Oceanogr., 7, 591601.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1984: Accelerating the convergence of equilibrium of ocean-climate models. J. Phys. Oceanogr., 14, 666673.

  • Chassignet, E. P., and D. P. Marshall, 2008: Gulf Stream separation in numerical ocean models. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 39–61.

  • Csanady, G. T., 1968: Wind-driven summer circulation in the Great Lakes. J. Geophys. Res., 73, 25792589.

  • Dietrich, D. E., and J. J. Wormeck, 1985: An optimized implicit scheme for compressible reactive gas flow. Numer. Heat Transfer, 8, 335348.

    • Search Google Scholar
    • Export Citation
  • Dietrich, D. E., R. L. Haney, V. Fernandez, S. Josey, and J. Tintore, 2004a: Air-sea fluxes based on observed annual cycle surface climatology and ocean model internal dynamics: A precise, non-damping zero-phase-lag approach applied to the Mediterranean Sea. J. Mar. Syst., 52, 145165.

    • Search Google Scholar
    • Export Citation
  • Dietrich, D. E., A. Mehra, R. L. Haney, M. J. Bowman, and Y. H. Tseng, 2004b: Dissipation effects in North Atlantic Ocean modeling. Geophys. Res. Lett., 31, L05302, doi:10.1029/2003GL019015.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1991: The third-order Adams–Bashforth method: An attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119, 702720.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and P. N. Blossey, 2012: Implicit–explicit multistep methods for fast-wave–slow-wave problems. Mon. Wea. Rev., 140, 13071325.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Hurlburt, H. E., and P. J. Hogan, 2008: The Gulf Stream pathway and the impacts of the eddy-driven abyssal circulation and the Deep Western Boundary Current. Dyn. Atmos. Oceans, 45, 71101.

    • Search Google Scholar
    • Export Citation
  • Kantha, L., and C. Clayson, 2000: Numerical Models of Oceans and Oceanic Processes. International Geophysics Series, Vol. 66, Academic Press, 750 pp.

    • Search Google Scholar
    • Export Citation
  • Kar, S. K., 2006: A semi-implicit Runge–Kutta time-difference scheme for the two-dimensional shallow-water equations. Mon. Wea. Rev., 134, 29162926.

    • Search Google Scholar
    • Export Citation
  • Kawabe, M., 1995: Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys. Oceanogr., 25, 31033117.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1965: On the use of implicit and iterative methods for the time integration of the wave equation. Mon. Wea. Rev., 93, 3346.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Lumpkin, R., and M. Pazos, 2007: Measuring surface currents with surface velocity program drifters: The instrument, its data, and some recent results. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al., Eds., Cambridge University Press, 39–67.

  • Magazenkov, L. N., 1980: Time integration schemes for fluid dynamics equations, effectively damping the high frequency components (in Russian). Tr. Gl. Geofiz. Obs., 410, 120129.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and A. Arakawa, 1976: Numerical Methods Used in Atmospheric Models. Global Atmosphere Research Program (GARP) Publication Series 17, Vol. I, GARP, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Miyazawa, Y., T. Kagimoto, X. Guo, and H. Sakuma, 2008: The Kuroshio large meander formation in 2004 analyzed by an eddy-resolving ocean forecast system. J. Geophys. Res.,113, C10015, doi:10.1029/2007JC004226.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parameterizations. I. Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175191.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical ocean. J. Phys. Oceanogr., 11, 14431451.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: The MOM 3 manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 680 pp.

  • Pfeffer, R., I. Navon, and X. Zou, 1992: A comparison of the impact of two time-differencing schemes on the NASA GLAS climate model. Mon. Wea. Rev., 120, 13811393.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413.

    • Search Google Scholar
    • Export Citation
  • Roache, P. J., 1995: Elliptic Marching Methods and Domain Decomposition. CRC Press, 208 pp.

  • Roache, P. J., and D. E. Dietrich, 1988: Evaluation of the filtered Leapfrog-Trapezoidal time integration method. Numer. Heat Transfer, 14, 149164.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. G., and G. Brassington, 1998: Accuracy in the context of a control-volume model. Atmos.–Ocean, 36, 355384.

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Sun, W. Y., 2010: Instability in leapfrog and forward-backward schemes. Mon. Wea. Rev., 138, 14971501.

  • Teixeira, J., C. A. Reynolds, and K. Judd, 2007: Time step sensitivity of nonlinear atmospheric models: Numerical convergence, truncation error growth, and ensemble design. J. Atmos. Sci., 64, 175189.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y. H., and M. H. Chien, 2011: Parallel Domain-decomposed Taiwan Multi-scale Community Ocean Model (PD-TIMCOM). Comput. Fluids, 45, 7783.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y. H., D. E. Dietrich, and J. H. Ferziger, 2005: Regional circulation of the Monterey Bay region: Hydrostatic versus nonhydrostatic modeling. J. Geophys. Res., 110, C09015, doi:10.1029/2003JC002153.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y. H., M. L. Shen, S. Jan, D. E. Dietrich, and C. P. Chiang, 2012: Validation of the Kuroshio Current system in the dual-domain Pacific Ocean model framework. Prog. Oceanogr., 105, 102124.

    • Search Google Scholar
    • Export Citation
  • Van der Vorst, H. A., 1992: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput., 13, 631644.

    • Search Google Scholar
    • Export Citation
  • Wang, D. P., and C. N. K. Mooers, 1976: Coastal-trapped waves in a continuously stratified ocean. J. Phys. Oceanogr., 6, 853863.

  • Williams, P. D., 2009: A proposed modificaton to the Robert–Asselin time filter. Mon. Wea. Rev., 137, 25382546.

  • Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399, 572575.

    • Search Google Scholar
    • Export Citation
  • Yoshinari, H., M. Ikeda, K. Tanaka, and Y. Masumoto, 2004: Sensitivity of the interannual Kuroshio Transport variation south of Japan to wind dataset in OGCM calculation. J. Oceanogr., 60, 341350.

    • Search Google Scholar
    • Export Citation
  • Young, C. C., Y. H. Tseng, M. L. Shen, Y. C. Liang, M. H. Chien, and C. H. Chien, 2012: Development of the Taiwan Multi-scale Community Ocean Model (TIMCOM). Environ. Modell. Software, 38, 214219.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 321 184 6
PDF Downloads 180 69 7