Abstract
The initiation and organization of a quasi-linear extreme-rain-producing mesoscale convective system (MCS) along a mei-yu front in east China during the midnight-to-morning hours of 8 July 2007 are studied using high-resolution surface observations and radar reflectivity, and a 24-h convection-permitting simulation with the nested grid spacing of 1.11 km. Both the observations and the simulation reveal that the quasi-linear MCS forms through continuous convective initiation and organization into west–east-oriented rainbands with life spans of about 4–10 h, and their subsequent southeastward propagation. Results show that the early convective initiation at the western end of the MCS results from moist southwesterly monsoonal flows ascending cold domes left behind by convective activity that develops during the previous afternoon-to-evening hours, suggesting a possible linkage between the early morning and late afternoon peaks of the mei-yu rainfall. Two scales of convective organization are found during the MCS's development: one is the east- to northeastward “echo training” of convective cells along individual rainbands, and the other is the southeastward “band training” of the rainbands along the quasi-linear MCS. The two organizational modes are similar within the context of “training” of convective elements, but they differ in their spatial scales and movement directions. It is concluded that the repeated convective backbuilding and the subsequent echo training along the same path account for the extreme rainfall production in the present case, whereas the band training is responsible for the longevity of the rainbands and the formation of the quasi-linear MCS.