Forecast Evaluation of an Observing System Simulation Experiment Assimilating Both Radar and Satellite Data

Thomas A. Jones Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Thomas A. Jones in
Current site
Google Scholar
PubMed
Close
,
Jason A. Otkin Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jason A. Otkin in
Current site
Google Scholar
PubMed
Close
,
David J. Stensrud Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
, and
Kent Knopfmeier Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Kent Knopfmeier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the first part of this study, Jones et al. compared the relative skill of assimilating simulated radar reflectivity and radial velocity observations and satellite 6.95-μm brightness temperatures TB and found that both improved analyses of water vapor and cloud hydrometeor variables for a cool-season, high-impact weather event across the central United States. In this study, the authors examine the impact of the observations on 1–3-h forecasts and provide additional analysis of the relationship between simulated satellite and radar data observations to various water vapor and cloud hydrometeor variables. Correlation statistics showed that the radar and satellite observations are sensitive to different variables. Assimilating 6.95-μm TB primarily improved the atmospheric water vapor and frozen cloud hydrometeor variables such as ice and snow. Radar reflectivity proved more effective in both the lower and midtroposphere with the best results observed for rainwater, graupel, and snow. The impacts of assimilating both datasets decrease rapidly as a function of forecast time. By 1 h, the effects of satellite data become small on forecast cloud hydrometeor values, though it remains useful for atmospheric water vapor. The impacts of radar data last somewhat longer, sometimes up to 3 h, but also display a large decrease in effectiveness by 1 h. Generally, assimilating both satellite and radar data simultaneously generates the best analysis and forecast for most cloud hydrometeor variables.

Corresponding author address: Dr. Thomas A. Jones, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: thomas.jones@noaa.gov

Abstract

In the first part of this study, Jones et al. compared the relative skill of assimilating simulated radar reflectivity and radial velocity observations and satellite 6.95-μm brightness temperatures TB and found that both improved analyses of water vapor and cloud hydrometeor variables for a cool-season, high-impact weather event across the central United States. In this study, the authors examine the impact of the observations on 1–3-h forecasts and provide additional analysis of the relationship between simulated satellite and radar data observations to various water vapor and cloud hydrometeor variables. Correlation statistics showed that the radar and satellite observations are sensitive to different variables. Assimilating 6.95-μm TB primarily improved the atmospheric water vapor and frozen cloud hydrometeor variables such as ice and snow. Radar reflectivity proved more effective in both the lower and midtroposphere with the best results observed for rainwater, graupel, and snow. The impacts of assimilating both datasets decrease rapidly as a function of forecast time. By 1 h, the effects of satellite data become small on forecast cloud hydrometeor values, though it remains useful for atmospheric water vapor. The impacts of radar data last somewhat longer, sometimes up to 3 h, but also display a large decrease in effectiveness by 1 h. Generally, assimilating both satellite and radar data simultaneously generates the best analysis and forecast for most cloud hydrometeor variables.

Corresponding author address: Dr. Thomas A. Jones, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: thomas.jones@noaa.gov
Save
  • Aksoy, A., D. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. Dowell, and C. Snyder, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community data assimilation facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., A. Hollingsworth, G. Kelly, P. Lönnberg, J. Pailleux, and Z. Zhang, 1991: Global observing system experiments on operational statistical retrievals of satellite sounding data. Mon. Wea. Rev., 119, 18511864.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., and G. Kelly, 2001: Observing-system experiments in the ECMWF 4D-Var data assimilation system. Quart. J. Roy. Meteor. Soc., 127, 14691488.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., P. Lopez, A. M. Tompkins, M. Janiskova, and E. Moreau, 2004: The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Quart. J. Roy. Meteor. Soc., 130, 917932.

    • Search Google Scholar
    • Export Citation
  • Collard, A. D., and A. P. McNally, 2009: The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 10441058.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W. S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., G. S. Romine, and C. Snder, 2010: Ensemble storm-scale data assimilation and prediction for severe convective storms. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 9.5. [Available online at https://ams.confex.com/ams/pdfpapers/176121.pdf.]

  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294.

    • Search Google Scholar
    • Export Citation
  • English, S. J., and U. Une, 2006: Assimilation of AMSU cloudy radiances. Preprints, 15th Int. TOVS Study Conf., Maratea, Italy, International TOVS Working Group, 447–454.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the retrieval of three-dimensional wind fields from dual-Doppler radars. Mon. Wea. Rev., 127, 21282142.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data assimilation method with a recursive filter for single-Doppler radar. J. Atmos. Oceanic Technol., 21, 457469.

    • Search Google Scholar
    • Export Citation
  • Heemink, A. W., M. Verlaan, and A. J. Segers, 2001: Variance reduced ensemble Kalman filtering. Mon. Wea. Rev., 129, 17181728.

  • Heidinger, A. K., C. O’Dell, R. Bennartz, and T. Greenwald, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45, 13881402.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res.,113, D13103, doi:10.1029/2008JD009944.

  • Jones, T. A., J. Otkin, D. J. Stensrud, and K. Knopfmeier, 2013a: Assimilation of satellite infrared radiances and Doppler radar observations during a cool season Observing System Simulation Experiment. Mon. Wea. Rev., 141, 3273–3299.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. J. Stensrud, P. Minnis, and R. Palikonda, 2013b: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 22722289.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545.

  • Le Marshall, J., and Coauthors, 2006: Improving global analysis and forecasting with AIRS. Bull. Amer. Meteor. Soc., 87, 891894.

  • Li, J., and H. Liu, 2009: Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements. Geophys. Res. Lett., 36, L11813, doi:10.1029/2009GL038285.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and J. Li, 2010: An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear sky full spatial resolution advanced IR soundings. J. Appl. Meteor. Climatol., 49, 821827.

    • Search Google Scholar
    • Export Citation
  • McCarty, W., G. Jedloveck, and T. L. Miller, 2009: Impact of the assimilation of Atmospheric Infrared Sounder radiance measurements on short-term weather forecasts. J. Geophys. Res.,114, D18122, doi:10.1029/2008JD011626.

  • McNally, A. P., 2009: The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 12141229.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., J. C. Derber, W. Wu, and B. B. Katz, 2000: The use of TOVS level-1b radiances in the NCEP SSI analysis system. Quart. J. Roy. Meteor. Soc., 126, 689724.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thepaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935957.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., X. L. Wang, R. Kistler, M. Kanamitsu, and E. Kalnay, 1995: Impact of satellite data on the CDAS-reanalysis system. Mon. Wea. Rev., 123, 124139.

    • Search Google Scholar
    • Export Citation
  • Moreau, E., P. Lopez, P. Bauer, A. M. Tompkins, M. Janisková, and F. Chevallier, 2004: Variational retrieval of temperature and humidity profiles using rain rates versus microwave brightness temperatures. Quart. J. Roy. Meteor. Soc., 130, 827852.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., 2010: Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res., 115, D19207, doi:10.1029/2009JD013759.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., 2012a: Assessing the impact of the covariance localization radius when assimilating infrared brightness temperature observations using an ensemble Kalman filter. Mon. Wea. Rev., 140, 543561.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., 2012b: Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event. J. Geophys. Res., 117, D19203, doi:10.1029/2012JD017568.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., D. C. Hartung, D. D. Turner, R. A. Petersen, W. F. Feltz, and E. Janzon, 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part I: Analysis impact. Mon. Wea. Rev., 139, 23092326.

    • Search Google Scholar
    • Export Citation
  • Polkinghorne, R., and T. Vukicevic, 2011: Data assimilation of cloud affected radiances in a cloud resolving model. Mon. Wea. Rev., 139, 755773.

    • Search Google Scholar
    • Export Citation
  • Reale, O., J. Susskind, R. Rosenberg, E. Brin, E. Liu, L. P. Riishojgaard, J. Terry, and J. C. Jusem, 2008: Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions. Geophys. Res. Lett., 35, L08809, doi:10.1029/2007GL033002.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing Company, 200 pp.

  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096.

    • Search Google Scholar
    • Export Citation
  • Seaman, C. J., M. Sengupta, and T. H. Vonder Haar, 2010: Mesoscale satellite data assimilation: Impact of cloud-affected infrared observations on a cloud-free initial model state. Tellus, 62A, 298318.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307.]

  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Stengel, M., M. Lindskog, P. Unden, N. Gustafsson, and R. Bennartz, 2010: An extended observation operator in HIRLAM 4D-VAR for the assimilation of cloud-affected satellite radiances. Quart. J. Roy. Meteor. Soc., 136, 10641074.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-Scale Warn-on-Forecast System. Bull. Amer. Meteor. Soc., 90, 14871499.

  • Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. Vonder Haar, and A. Jones, 2004: Mesoscale cloud state estimation from visible and infrared satellite radiances. Mon. Wea. Rev., 132, 30663077.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., M. Sengupta, A. S. Jones, and T. Vonder Haar, 2006: Cloud-resolving satellite data assimilation: Information content of IR window observations and uncertainties in estimation. J. Atmos. Sci., 63, 901919.

    • Search Google Scholar
    • Export Citation
  • Weng, F., T. Zhu, and B. Yan, 2007: Satellite data assimilation in numerical weather prediction models. Part II: Uses of rain-affected radiances from microwave observations for hurricane vortex analysis. J. Atmos. Sci., 64, 39103925.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeir, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130, 433453.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR System: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768788.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., H. Lu, S. Gao, M. Xue, and M. Tong, 2008: Time-expanded sampling for ensemble Kalman filter: Assimilation experiments with simulated radar observations. Mon. Wea. Rev., 136, 26512667.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Wea. Rev., 138, 517538.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 442 218 7
PDF Downloads 200 53 2