The Tropical Cyclone Diurnal Cycle of Mature Hurricanes

Jason P. Dunion Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Jason P. Dunion in
Current site
Google Scholar
PubMed
Close
,
Christopher D. Thorncroft University at Albany, State University of New York, Albany, New York

Search for other papers by Christopher D. Thorncroft in
Current site
Google Scholar
PubMed
Close
, and
Christopher S. Velden Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Christopher S. Velden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The diurnal cycle of tropical convection and the tropical cyclone (TC) cirrus canopy has been described extensively in previous studies. However, a complete understanding of the TC diurnal cycle remains elusive and is an area of ongoing research. This work describes a new technique that uses infrared satellite image differencing to examine the evolution of the TC diurnal cycle for all North Atlantic major hurricanes from 2001 to 2010. The imagery reveals cyclical pulses in the infrared cloud field that regularly propagate radially outward from the storm. These diurnal pulses begin forming in the storm’s inner core near the time of sunset each day and continue to move away from the storm overnight, reaching areas several hundreds of kilometers from the circulation center by the following afternoon. A marked warming of the cloud tops occurs behind this propagating feature and there can be pronounced structural changes to a storm as it moves away from the inner core. This suggests that the TC diurnal cycle may be an important element of TC dynamics and may have relevance to TC structure and intensity change. Evidence is also presented showing the existence of statistically significant diurnal signals in TC wind radii and objective Dvorak satellite-based intensity estimates for the 10-yr hurricane dataset that was examined. Findings indicate that TC diurnal pulses are a distinguishing characteristic of the TC diurnal cycle and the repeatability of TC diurnal pulsing in time and space suggests that it may be an unrealized, yet fundamental TC process.

Corresponding author address: Jason P. Dunion, Rosenstiel School of Marine and Atmospheric Science, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: jason.dunion@noaa.gov

Abstract

The diurnal cycle of tropical convection and the tropical cyclone (TC) cirrus canopy has been described extensively in previous studies. However, a complete understanding of the TC diurnal cycle remains elusive and is an area of ongoing research. This work describes a new technique that uses infrared satellite image differencing to examine the evolution of the TC diurnal cycle for all North Atlantic major hurricanes from 2001 to 2010. The imagery reveals cyclical pulses in the infrared cloud field that regularly propagate radially outward from the storm. These diurnal pulses begin forming in the storm’s inner core near the time of sunset each day and continue to move away from the storm overnight, reaching areas several hundreds of kilometers from the circulation center by the following afternoon. A marked warming of the cloud tops occurs behind this propagating feature and there can be pronounced structural changes to a storm as it moves away from the inner core. This suggests that the TC diurnal cycle may be an important element of TC dynamics and may have relevance to TC structure and intensity change. Evidence is also presented showing the existence of statistically significant diurnal signals in TC wind radii and objective Dvorak satellite-based intensity estimates for the 10-yr hurricane dataset that was examined. Findings indicate that TC diurnal pulses are a distinguishing characteristic of the TC diurnal cycle and the repeatability of TC diurnal pulsing in time and space suggests that it may be an unrealized, yet fundamental TC process.

Corresponding author address: Jason P. Dunion, Rosenstiel School of Marine and Atmospheric Science, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: jason.dunion@noaa.gov
Save
  • Aksoy, A., 2013: Storm-relative observations in tropical cyclone data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 141, 506522, doi:10.1175/MWR-D-12-00094.1.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of cloud and precipitation. Proc. Fifth Assembly U.G.G.I. Lisbon, Vol. 2, Lisbon, Portugal, UGGI, 156 pp.

  • Browner, S. P., W. L. Woodley, and C. G. Griffith, 1977: Diurnal oscillation of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856864, doi:10.1175/1520-0493(1977)105<0856:DOOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and W. R. Cotton, 1988: The sensitivity of a simulated extratropical mesoscale convective system to longwave radiation and ice-phase microphysics. J. Atmos. Sci., 45, 38973910, doi:10.1175/1520-0469(1988)045<3897:TSOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Demuth, J., M. DeMaria, and J. A. Knaff, 2006: Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, doi:10.1175/JAM2429.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Gallina, G. M., and C. S. Velden, 2000: A quantitative look at the relationship between environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, Amer. Meteor. Soc., 7A.4. [Available online at https://ams.confex.com/ams/last2000/webprogram/24HURRICANES.html.]

  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell Jr., 1963: On the power spectrum of “red noise.” J. Atmos. Sci., 20, 182184, doi:10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., and C. Velden, 2011: Supporting meteorological field experiment missions and post-mission analysis with satellite digital data and products. Bull. Amer. Meteor. Soc., 92, 10091022, doi:10.1175/2011BAMS3138.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., T. F. Lee, K. Richardson, C. Sampson, F. J. Turk, and J. E. Kent, 2001: Satellite multisensor tropical cyclone structure monitoring. Bull. Amer. Meteor. Soc., 82, 567578, doi:10.1175/1520-0477(2001)082<0567:RIDOSP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. A. Rutledge, T. J. Matejka, and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III: Air motions and precipitation growth in a warm-frontal rainband. J. Atmos. Sci., 38, 639649, doi:10.1175/1520-0469(1981)038<0639:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, 21 pp.

  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, doi:10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 551556, doi:10.1175/1520-0469(1963)020<0551:TDPCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., and Coauthors, 1999: The Man computer Interactive Data Access System: 25 Years of Interactive Processing. Bull. Amer. Meteor. Soc., 80, 271284, doi:10.1175/1520-0477(1999)080<0271:TMCIDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, C. S., K. K. W. Cheung, W.-T. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 3207–3223, doi:10.1175/2010MWR3023.1.

  • Lee, T. F., F. J. Turk, J. D. Hawkins, and K. A. Richardson, 2002: Interpretation of TRMM TMI images of tropical cyclones. Earth Interact., 6, doi:10.1175/1087-3562(2002)006<0001:IOTTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 1998: A numerical study of the diurnal cycle of tropical oceanic convection. J. Atmos. Sci., 55, 23292344, doi:10.1175/1520-0469(1998)055<2329:ANSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981415, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and G. J. Tripoli, 1998: Inertial available kinetic energy and the dynamics of tropical plume formation. Mon. Wea. Rev., 126, 22002216, doi:10.1175/1520-0493(1998)126<2200:IAKEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, doi:10.1175/WAF955.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., R. M. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and WRF model. J. Adv. Model. Earth Syst.,5, 382–405, doi:10.1002/jame.20031.

    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2007: The Advanced Dvorak Technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298, doi:10.1175/WAF975.1.

    • Search Google Scholar
    • Export Citation
  • Pfister, L., and Coauthors, 1993: Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study. J. Geophys. Res., 98, 8611–8638, doi:10.1029/92JD01679.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, doi:10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799, doi:10.1175/MWR-D-10-05075.1.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273304, doi:10.1175/1520-0493(1989)117<0273:NSOAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, doi:10.1175/BAMS-87-9-1195.

    • Search Google Scholar
    • Export Citation
  • Weickmann, H. K., A. B. Long, and L. R. Hoxit, 1977: Some examples of rapidly growing oceanic cumulonimbus clouds. Mon. Wea. Rev., 105, 469476, doi:10.1175/1520-0493(1977)105<0469:SEORGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2922 712 51
PDF Downloads 2714 404 44