Simulation of Monsoon Depressions Using WRF-VAR: Impact of Different Background Error Statistics and Lateral Boundary Conditions

A. Routray National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India

Search for other papers by A. Routray in
Current site
Google Scholar
PubMed
Close
,
S. C. Kar National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India

Search for other papers by S. C. Kar in
Current site
Google Scholar
PubMed
Close
,
P. Mali National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India

Search for other papers by P. Mali in
Current site
Google Scholar
PubMed
Close
, and
K. Sowjanya National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India

Search for other papers by K. Sowjanya in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In a variational data assimilation system, background error statistics (BES) spread the influence of the observations in space and filter analysis increments through dynamic balance or statistical relationships. In a data-sparse region such as the Bay of Bengal, BES play an important role in defining the location and structure of monsoon depressions (MDs). In this study, the Indian-region-specific BES have been computed for the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system. A comparative study using single observation tests is carried out using the computed BES and global BES within the WRF system. Both sets of BES are used in the assimilation cycles and forecast runs for simulating the meteorological features associated with the MDs. Numerical experiments have been conducted to assess the relative impact of various BES in the analysis and simulations of the MDs. The results show that use of regional BES in the assimilation cycle has a positive impact on the prediction of the location, propagation, and development of rainbands associated with the MDs. The track errors of MDs are smaller when domain-specific BES are used in the assimilation cycle. Additional experiments have been conducted using data from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) as initial and boundary conditions (IBCs) in the assimilation cycle. The results indicate that the use of domain-dependent BES and high-resolution ERA-I data as IBCs further improved the initial conditions for the model leading to better forecasts of the MDs.

Corresponding author address: Dr. Ashish Routray, NCMRWF, Sectore-62, Noida 201309, India. E-mail: ashishroutray.iitd@gmail.com

Abstract

In a variational data assimilation system, background error statistics (BES) spread the influence of the observations in space and filter analysis increments through dynamic balance or statistical relationships. In a data-sparse region such as the Bay of Bengal, BES play an important role in defining the location and structure of monsoon depressions (MDs). In this study, the Indian-region-specific BES have been computed for the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system. A comparative study using single observation tests is carried out using the computed BES and global BES within the WRF system. Both sets of BES are used in the assimilation cycles and forecast runs for simulating the meteorological features associated with the MDs. Numerical experiments have been conducted to assess the relative impact of various BES in the analysis and simulations of the MDs. The results show that use of regional BES in the assimilation cycle has a positive impact on the prediction of the location, propagation, and development of rainbands associated with the MDs. The track errors of MDs are smaller when domain-specific BES are used in the assimilation cycle. Additional experiments have been conducted using data from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) as initial and boundary conditions (IBCs) in the assimilation cycle. The results indicate that the use of domain-dependent BES and high-resolution ERA-I data as IBCs further improved the initial conditions for the model leading to better forecasts of the MDs.

Corresponding author address: Dr. Ashish Routray, NCMRWF, Sectore-62, Noida 201309, India. E-mail: ashishroutray.iitd@gmail.com
Save
  • Barker, D. M., W. Huang, Y.-R. Guo, A. Bourgeois, and X. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, doi:10.1256/qj.04.15.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Chang, H.-I., D. Niyogi, A. Kumar, C. M. Kishtawal, J. Dudhia, F. Chen, U. C. Mohanty, and M. Shepherd, 2009: Possible relation between land surface feedback and the post-landfall structure of monsoon depressions. Geophys. Res. Lett., 36, L15826, doi:10.1029/2009GL037781.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Daley, R., 1993: Atmospheric data assimilation on the equatorial beta plane. Atmos.–Ocean, 31, 421450, doi:10.1080/07055900.1993.9649479.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1996: Generation of global multivariate error covariances by singular-value decomposition of the linear balance equation. Mon. Wea. Rev., 124, 25742587, doi:10.1175/1520-0493(1996)124<2574:GOGMEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418, doi:10.1002/qj.49710243210.

    • Search Google Scholar
    • Export Citation
  • Deb, S. K., C. M. Kishtawal, and P. K. Pal, 2010: Impact of Kalpana-1-derived water vapor winds on Indian Ocean tropical cyclones forecast. Mon. Wea. Rev.,138, 987–1003, doi:10.1175/2009MWR3041.1.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., 2003: Background error covariance modeling. Proc. Seminar on Recent Development in Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 45–63.

  • Godbole, R. V., 1977: The composite structure of the monsoon depression. Tellus, 29A, 2540, doi:10.1111/j.2153-3490.1977.tb00706.x.

  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter—3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34, 315, doi:10.1175/1520-0450-34.1.3.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, doi:10.1175/MWR-2864.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143, doi:10.1175/2008MWR2737.1.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus Jr., M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF Model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060, doi:10.1175/WAF888.1.

    • Search Google Scholar
    • Export Citation
  • Jianfeng, G. U., Q. Xiao, Y.-H. Kuo, D. M. Barker, X. Jishan, and M. A. Xiaoxing, 2005: Assimilation and simulation of Typhoon Rusa (2002) using the WRF system. Adv. Atmos. Sci., 22, 415427, doi:10.1007/BF02918755.

    • Search Google Scholar
    • Export Citation
  • Jianying, J., J. Jixi, B. Yalin, and L. Nianqing, 2007: Heavy rainfall associated with a monsoon depression in South China: Structure analysis. Acta Meteor. Sin., 22, 5165.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kar, S. C., K. Rupa, M. Das Gupta, and S. V. Singh, 2003: Analyses of Orissa super cyclone using TRMM (TMI), DMSP (SSM/I) and OceanSat-I (MSMR) derived data. J. Atmos. Ocean Sci.,9, 1–18, doi:10.1080/1023673031000080376.

  • Krishnamurti, T. N., M. Kanamitsu, R. Godbole, C. B. Chang, F. Carr, and J. H. Chow, 1975: Study of a monsoon depression, (I), Synoptic structure. J. Meteor. Soc. Japan, 53, 227240.

    • Search Google Scholar
    • Export Citation
  • Majewski, D., 1997: Operational regional prediction. Meteor. Atmos. Phys., 63, 89104, doi:10.1007/BF01025366.

  • Mohanty, U. C., K. K. Osuri, A. Routray, M. Mohapatra, and S. Pattanayak, 2010: Simulation of Bay of Bengal tropical cyclones with WRF model: Impact of initial and boundary conditions. Mar. Geod., 33, 294314, doi:10.1080/01490419.2010.518061.

    • Search Google Scholar
    • Export Citation
  • Osuri, K. K., U. C. Mohanty, A. Routray, M. Mohapatra, and D. Niyogi, 2013: Real-time track prediction of tropical cyclones over the North Indian Ocean using the ARW model. J. Appl. Meteor. Climatol., 52, 2476–2492, doi:10.1175/JAMC-D-12-0313.1.

    • Search Google Scholar
    • Export Citation
  • Parrish, D., 1988: The introduction of Hough functions into optimal interpolation. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc..

  • Parrish, D., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perkey, D. J., and W. Kreitzberg, 1976: A time-dependent lateral boundary scheme for limited area primitive equation models. Mon. Wea. Rev., 104, 744755, doi:10.1175/1520-0493(1976)104<0744:ATDLBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, doi:10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rakesh, V., R. Singh, P. K. Pal, and P. C. Joshi, 2009: Impact of satellite-observed surface wind and total precipitable water on WRF short-range forecasts over Indian region during monsoon 2006. Wea. Forecasting, 24, 17061731, doi:10.1175/2009WAF2222242.1.

    • Search Google Scholar
    • Export Citation
  • Rao, Y. P., 1976: Southwest Monsoon. Meteor. Monogr. (Synoptic Meteorology), No. 1/1976, India Meteorological Department, 366 pp.

  • Routray, A., U. C. Mohanty, D. Niyogi, S. R. H. Rizvi, and K. K. Osuri, 2010a: Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteor. Atmos. Phys., 106, 107125, doi:10.1007/s00703-009-0054-3.

    • Search Google Scholar
    • Export Citation
  • Routray, A., U. C. Mohanty, S. R. H. Rizvi, D. Niyogi, K. K. Osuri, and D. Pradhan 2010b: Impact of Doppler weather radar data on numerical forecast of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc.,136, 1836–1850, doi:10.1002/qj.678.

  • Rupa, K., S. R. H. Rizvi, S. C. Kar, U. C. Mohanty, and R. K. Paliwal, 2002: Assimilation of IRS-P4 (MSMR) meteorological data in the NCMRWF global data assimilation system. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111, 351364.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 1977: Some aspects of the life history, structure and movement of monsoon depressions. Pure Appl. Geophys., 115, 15011529, doi:10.1007/BF00874421.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132,30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf.]

  • Sowjanya, K., S. C. Kar, A. Routray, and P. Mali, 2013: Impact of SSM/I retrieval data on the systematic bias of analyses and forecasts of the Indian summer monsoon using WRF assimilation system. Int. J. Remote Sens., 34, 631654, doi:10.1080/01431161.2012.712230.

    • Search Google Scholar
    • Export Citation
  • Vinodkumar, A. Chandrasekar, K. Alapaty, and D. Niyogi, 2009: Assessment of data assimilation approaches for the simulation of a monsoon depression over the Indian monsoon region. Bound.-Layer Meteor., 133, 343366, doi:10.1007/s10546-009-9426-y.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, doi:10.1175/2007MWR2018.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, and J.-N. Thépaut, 2009: A comparison of variational and ensemble-based data assimilation systems for reanalysis of sparse observations. Mon. Wea. Rev., 137, 19911999, doi:10.1175/2008MWR2781.1.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and G. L. Browning, 1974: Formulation of the lateral boundary conditions for the NCAR Limited Area Model. J. Appl. Meteor., 13, 816, doi:10.1175/1520-0450(1974)013<0008:FOTLBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and J. L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus, 55A, 126147, doi:10.1034/j.1600-0870.2003.00010.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 390 98 4
PDF Downloads 233 42 3