The Impact of Data Assimilation Length Scales on Analysis and Prediction of Convective Storms

Heiner Lange Hans Ertel Centre for Weather Research, Data Assimilation Branch, Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by Heiner Lange in
Current site
Google Scholar
PubMed
Close
and
George C. Craig Hans Ertel Centre for Weather Research, Data Assimilation Branch, Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by George C. Craig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An idealized convective test bed for the local ensemble transform Kalman filter (LETKF) is set up to perform storm-scale data assimilation of simulated Doppler radar observations. Convective systems with lifetimes exceeding 6 h are triggered in a doubly periodic domain. Perfect-model experiments are used to investigate the limited predictability in precipitation forecasts by comparing analysis schemes that resolve different length scales. Starting from a high-resolution reference scheme with 8-km covariance localization and observations with 2-km resolution on a 5-min cycle, an experimental hierarchy is set up by successively choosing a larger covariance localization radius of 32 km, observations that are horizontally averaged by a factor of 4, a coarser resolution in the calculation of the analysis weights, and a cycling interval of 20 min. After 3 h of assimilation, the high-resolution analysis scheme is clearly superior to the configurations with coarser scales in terms of RMS error and field-oriented measures. The difference is associated with the observation resolution and a larger localization radius required for filter convergence with coarse observations. The high-resolution analysis leads to better forecasts for the first hour, but after 3 hours, the forecast quality of the schemes is indistinguishable. The more rapid error growth in forecasts from the high-resolution analysis appears to be associated with a limited predictability of the small scales, but also with gravity wave noise and spurious convective cells. The latter suggests that the field is in some sense less balanced, or less consistent with the model dynamics, than in the coarser-resolution analysis.

Corresponding author address: Heiner Lange, Meteorological Institute Munich, Theresienstrasse 37, 80333 Muenchen, Germany. E-mail: heiner.lange@lmu.de

Abstract

An idealized convective test bed for the local ensemble transform Kalman filter (LETKF) is set up to perform storm-scale data assimilation of simulated Doppler radar observations. Convective systems with lifetimes exceeding 6 h are triggered in a doubly periodic domain. Perfect-model experiments are used to investigate the limited predictability in precipitation forecasts by comparing analysis schemes that resolve different length scales. Starting from a high-resolution reference scheme with 8-km covariance localization and observations with 2-km resolution on a 5-min cycle, an experimental hierarchy is set up by successively choosing a larger covariance localization radius of 32 km, observations that are horizontally averaged by a factor of 4, a coarser resolution in the calculation of the analysis weights, and a cycling interval of 20 min. After 3 h of assimilation, the high-resolution analysis scheme is clearly superior to the configurations with coarser scales in terms of RMS error and field-oriented measures. The difference is associated with the observation resolution and a larger localization radius required for filter convergence with coarse observations. The high-resolution analysis leads to better forecasts for the first hour, but after 3 hours, the forecast quality of the schemes is indistinguishable. The more rapid error growth in forecasts from the high-resolution analysis appears to be associated with a limited predictability of the small scales, but also with gravity wave noise and spurious convective cells. The latter suggests that the field is in some sense less balanced, or less consistent with the model dynamics, than in the coarser-resolution analysis.

Corresponding author address: Heiner Lange, Meteorological Institute Munich, Theresienstrasse 37, 80333 Muenchen, Germany. E-mail: heiner.lange@lmu.de
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, doi:10.1175/2008MWR2691.1.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292, doi:10.1175/2009MWR3086.1.

    • Search Google Scholar
    • Export Citation
  • Alpert, J. C., and V. K. Kumar, 2007: Radial wind super-obs from the WSR-88D radars in the NCEP operational assimilation system. Mon. Wea. Rev., 135, 10901109, doi:10.1175/MWR3324.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev.,139, 3887–3905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S., S. Weygandt, and G. Manikin, cited 2012: Overview of the rapid refresh rap. [Available online at http://ruc.noaa.gov/pdf/RAPbrief.NCEP-Dir-20Mar2012.pdf.]

  • Bischof, M., 2011: Ensemble simulations of convective storms. M.S. thesis, Institute for Atmospheric and Climatic Sciences at Swiss Federal Institute of Technology, Zürich, Switzerland, 117 pp.

  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bocquet, M., C. A. Pires, and L. Wu, 2010: Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Wea. Rev., 138, 29973023, doi:10.1175/2010MWR3164.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morisson, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and A. Dörnbrack, 2008: Entrainment in cumulus clouds: What resolution is cloud-resolving? J. Atmos. Sci., 65, 39783988, doi:10.1175/2008JAS2613.1.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and M. Würsch, 2013: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Quart. J. Roy. Meteor. Soc., 139, 515523, doi:10.1002/qj.1980.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., C. Keil, and D. Leuenberger, 2012: Constraints on the impact of radar rainfall data assimilation on forecasts of cumulus convection. Quart. J. Roy. Meteor. Soc., 138, 340352, doi:10.1002/qj.929.

    • Search Google Scholar
    • Export Citation
  • Dance, S., 2004: Issues in high resolution limited area data assimilation for quantitative precipitation forecasting. Physica D, 196, 127, doi:10.1016/j.physd.2004.05.001.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, doi:10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. C. Craig, S. Gray, and P. Clark, 2012: Case-to-case variability of predictability of deep convection in a mesoscale model. Quart. J. Roy. Meteor. Soc., 138, 638648, doi:10.1002/qj.943.

    • Search Google Scholar
    • Export Citation
  • Dong, J., M. Xue, and K. K. Droegemeier, 2011: The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter. Meteor. Atmos. Sci., 112, 4161, doi:10.1007/s00703-011-0130-3.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol.,26, 911–927, doi:10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Cook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and M. Xue, 2008: An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data. Mon. Wea. Rev., 136, 945963, doi:10.1175/2007MWR2120.1.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522, doi:10.1175/2010MWR3328.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478, doi:10.1175/2007JAS2143.1.

    • Search Google Scholar
    • Export Citation
  • Holland, B., and X. Wang, 2013: Effects of sequential or simultaneous assimilation of observations and localization methods on the performance of the ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 139, 758770, doi:10.1002/qj.2006.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Janjić, T., L. Nerger, A. Albertella, J. Schrter, and S. Skachko, 2011: On domain localization in ensemble-based Kalman filter algorithms. Mon. Wea. Rev., 139, 20462060, doi:10.1175/2011MWR3552.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, T., D. McLaughlin, S. E. Cohn, and M. Verlaan, 2014: Conservation of mass and preservation of positivity with ensemble-type Kalman filter algorithms. Mon. Wea. Rev., 142, 755773, doi:10.1175/MWR-D-13-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and S.-C. Yang, 2010: Accelerating the spin-up of ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 136, 16441651, doi:10.1002/qj.652.

    • Search Google Scholar
    • Export Citation
  • Keil, C., and G. C. Craig, 2009: A displacement and amplitude score employing an optical flow technique. Wea. Forecasting, 24, 12971308, doi:10.1175/2009WAF2222247.1.

    • Search Google Scholar
    • Export Citation
  • Kober, K., G. C. Craig, C. Keil, and A. Dörnbrack, 2012: Blending a probabilistic nowcasting method with a high-resolution numerical weather prediction ensemble for convective precipitation forecasts. Quart. J. Roy. Meteor. Soc., 138, 755768, doi:10.1002/qj.939.

    • Search Google Scholar
    • Export Citation
  • Kuhl, D., and Coauthors, 2007: Assessing predictability with a local ensemble Kalman filter. J. Atmos. Sci., 64, 11161140, doi:10.1175/JAS3885.1.

    • Search Google Scholar
    • Export Citation
  • Lien, G.-Y., E. Kalnay, and T. Miyoshi, 2013: Effective assimilation of global precipitation: Simulation experiments. Tellus, 65A, 19915, doi:10.3402/tellusa.v65i0.19915.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc.,116, 779–798, doi:10.1002/qj.49711649402.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Lu, H., and Q. Xu, 2009: Trade-offs between measurement accuracy and resolutions in configuring phased-array radar velocity scans for ensemble-based storm-scale data assimilation. J. Appl. Meteor. Climatol., 48, 12301244, doi:10.1175/2008JAMC2009.1.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, doi:10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reich, H., A. Rhodin, and C. Schraff, 2011: LETKF for the nonhydrostatic regional model COSMO-DE. COSMO Newsletter, No. 11, Consortium for Small-scale Modelling, 27–31. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter11/.]

  • Salonen, K., H. Järvinen, G. Haase, S. Niemelä, and R. Eresma, 2009: Doppler radar radial winds in HIRLAM. Part II: Optimizing the super-observation processing. Tellus, 61A, 288295, doi:10.1111/j.1600-0870.2008.00381.x.

    • Search Google Scholar
    • Export Citation
  • Scheufele, K., K. Kober, G. C. Craig, and C. Keil, 2014: Combining probabilistic precipitation forecasts from a nowcasting technique with a time-lagged ensemble. Meteor. Appl., 21, 230240, doi:10.1002/met.1381.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bnard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Seko, H., T. Kawabata, and T. Tsuyuki, 2004: Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation. J. Meteor. Soc. Japan,82, 473489.

    • Search Google Scholar
    • Export Citation
  • Simon, E., and L. Bertino, 2009: Application of the Gaussian anamorphosis to assimilation in a 3-d coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment. Ocean Sci., 5, 495510, doi:10.5194/os-5-495-2009.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating Mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175/2555.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2013: The impact of covariance localization for radar data on EnKF analyses of a developing MCS: Observing system simulation experiments. Mon. Wea. Rev .,141, 3691–3709, doi:10.1175/MWR-D-12-00203.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. Gao, 2010: Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts. Mon. Wea. Rev., 138, 12501272, doi:10.1175/2009MWR3027.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-Scale Warn-on-Forecast System—A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, doi:10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., M. Xue, A. D. Schenkman, and J. Min, 2013: An iterative ensemble square root filter and tests with simulated radar data for storm-scale data assimilation. Quart. J. Roy. Meteor. Soc.,139, 18881903, doi:10.1002/qj.2077.

  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487, doi:10.1175/2008MWR2415.1.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., S. G. Benjamin, T. G. Smirnova, and J. M. Brown, 2008: Assimilation of radar reflectivity data using a diabatic digital filter within the Rapid Update Cycle. 12th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), New Orleans, LA, Amer. Meteor. Soc., 8.4. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_134081.htm.]

  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, doi:10.1175/2007MWR2018.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2011: Measuring information content from observations for data assimilation: Spectral formulations and their implications to observational data compression. Tellus,63A, 793–804, doi:10.1111/j.1600-0870.2011.00524.x.

  • Yang, S.-C., E. Kalnay, B. Hunt, and N. E. Bowler, 2009: Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 251262, doi:10.1002/qj.353.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, doi:10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594, doi:10.1175/JAS4028.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 712 146 49
PDF Downloads 402 79 11