The Influence of Land Surface Heterogeneities on Cloud Size Development

Malte Rieck Max Planck Institute for Meteorology, and International Max Planck Research School on Earth System Modelling, Hamburg, Germany

Search for other papers by Malte Rieck in
Current site
Google Scholar
PubMed
Close
,
Cathy Hohenegger Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Cathy Hohenegger in
Current site
Google Scholar
PubMed
Close
, and
Chiel C. van Heerwaarden Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Chiel C. van Heerwaarden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes the effects of land surface heterogeneities at various horizontal scales on the transition from shallow to deep convection and on the cloud size distribution. An idealized case of midlatitude summertime convection is simulated by means of large-eddy simulations coupled to an interactive land surface. The transition is accelerated over heterogeneous surfaces. The simulation with an intermediate patch size of 12.8 km exhibits the fastest transition with a transition time two-thirds that over a homogeneous surface. A similar timing is observed for the precipitation onset whereas the total accumulated rainfall tends to increase with patch size. The cloud size distribution can be approximated by a power law with a scale break. The exponent of the power law is independent of the heterogeneity scale, implying a similar cloud cover between the simulations. In contrast, the scale break varies with patch size. The size of the largest clouds does not scale with the boundary layer height, although their maximum size scales with the patch size. Finally, the idea that larger clouds grow faster, known from homogeneous surface conditions, is not fully valid over heterogeneous surfaces. These various aspects can be understood from the complex interplay between the characteristics of the triggered mesoscale circulations and a cloud development acting in response to the diurnal cycle in surface heating. The results also call for adequate representation of such effects in convective parameterizations.

Corresponding author address: Malte Rieck, Max Planck Institute for Meteorology, Bundesstrasse 53, Hamburg 20146, Germany. E-mail: malte.rieck@mpimet.mpg.de

Abstract

This study analyzes the effects of land surface heterogeneities at various horizontal scales on the transition from shallow to deep convection and on the cloud size distribution. An idealized case of midlatitude summertime convection is simulated by means of large-eddy simulations coupled to an interactive land surface. The transition is accelerated over heterogeneous surfaces. The simulation with an intermediate patch size of 12.8 km exhibits the fastest transition with a transition time two-thirds that over a homogeneous surface. A similar timing is observed for the precipitation onset whereas the total accumulated rainfall tends to increase with patch size. The cloud size distribution can be approximated by a power law with a scale break. The exponent of the power law is independent of the heterogeneity scale, implying a similar cloud cover between the simulations. In contrast, the scale break varies with patch size. The size of the largest clouds does not scale with the boundary layer height, although their maximum size scales with the patch size. Finally, the idea that larger clouds grow faster, known from homogeneous surface conditions, is not fully valid over heterogeneous surfaces. These various aspects can be understood from the complex interplay between the characteristics of the triggered mesoscale circulations and a cloud development acting in response to the diurnal cycle in surface heating. The results also call for adequate representation of such effects in convective parameterizations.

Corresponding author address: Malte Rieck, Max Planck Institute for Meteorology, Bundesstrasse 53, Hamburg 20146, Germany. E-mail: malte.rieck@mpimet.mpg.de
Save
  • Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 2666–2689, doi:10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., C. P. Weaver, D. S. Nolan, and R. Avissar, 2003: A preferred scale for landscape forced mesoscale circulations? J. Geophys. Res., 108, 8854, doi:10.1029/2002JD003097.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887–3905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc.,130, 3119–3137, doi:10.1256/qj.03.103.

  • Betts, A. K., 1975: Parametric interpretation of trade-wind cumulus budget studies. J. Atmos. Sci., 32, 1934–1945, doi:10.1175/1520-0469(1975)032<1934:PIOTWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 2682–2698, doi:10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 1382–1401, doi:10.1175/1520-0450(1994)033<1382:IOLSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dalu, G., and R. Pielke, 1989: An analytical study of the sea breeze. J. Atmos. Sci., 46, 1815–1825, doi:10.1175/1520-0469(1989)046<1815:AASOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2012: Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm. Atmos. Chem. Phys., 12, 1101–1119, doi:10.5194/acp-12-1101-2012.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 1–19, doi:10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2024, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, and J. H. Marsham, 2011: What is the mechanism for the modification of convective cloud distributions by land surface induced flows? J. Atmos. Sci., 68, 619–634, doi:10.1175/2010JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., and J. Yang, 2007: Evaluation of a new convective cloud field model: Precipitation over the maritime continent. Atmos. Chem. Phys., 7, 409–421, doi:10.5194/acp-7-409-2007.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and A. Seifert, 2013: Automated tracking of shallow cumulus clouds in large domain, long duration Large Eddy Simulations. Geosci. Model Dev. Discuss.,6, 2287–2323, doi:10.5194/gmdd-6-2287-2013.

  • Heus, T., and Coauthors, 2010: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev., 3, 415–444, doi:10.5194/gmd-3-415-2010.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448–464, doi:10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 5003–5020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., and S. A. Margulis, 2013: Impact of soil moisture heterogeneity length scale and gradients on daytime coupled land-cloudy boundary layer interactions. Hydrol. Processes,27, 1988–2003, doi:10.1002/hyp.9351.

  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273, 593–610, doi:10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and G. H. Bryan, 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 2901–2917, doi:10.1175/MWR-D-10-05037.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 3421–3436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science,305, 1138–1140, doi:10.1126/science.1100217.

  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 1895–1909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 1552–1562, doi:10.1002/qj.2238.

  • Lynn, B., W.-K. Tao, and P. Wetzel, 1998: A study of landscape-generated deep moist convection. Mon. Wea. Rev., 126, 928–942, doi:10.1175/1520-0493(1998)126<0928:ASOLGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., W.-K. Tao, and F. Abramopoulos, 2001: A parameterization for the triggering of landscape-generated moist convection. Part I: Analysis of high-resolution model results. J. Atmos. Sci., 58, 575–592, doi:10.1175/1520-0469(2001)058<0575:APFTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., 2009: A dual mass flux framework for boundary layer convection. Part II: Clouds. J. Atmos. Sci., 66, 1489–1506, doi:10.1175/2008JAS2636.1.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., H. J. J. Jonker, and P. Siebesma, 2003: Size statistics of cumulus cloud populations in large-eddy simulations. J. Atmos. Sci., 60, 1060–1074, doi:10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., R. Brown, and M. E. B. Gray, 2002: The impact of horizontal resolution on the simulations of convective development over land. Quart. J. Roy. Meteor. Soc., 128, 2031–2044, doi:10.1256/003590002320603511.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151–177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and B. Stevens, 2009: Monte Carlo spectral integration: A consistent approximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst., 1, 1–9, doi:10.3894/JAMES.2009.1.1.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and B. Stevens, 2013: Paths to accuracy for radiation parameterizations in atmospheric models. J. Adv. Model. Earth Syst., 5, 225–233, doi:10.1002/jame.20027.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87–105, doi:10.1175/2007JAS2263.1.

    • Search Google Scholar
    • Export Citation
  • Raasch, S., and G. Harbusch, 2001: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound.-Layer Meteor., 101, 31–59, doi:10.1023/A:1019297504109.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., S. C. Sherwood, and Y. Li, 2008: Resonant response of deep convection to surface hot spots. J. Atmos. Sci., 65, 276–286, doi:10.1175/2007JAS2398.1.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 1587–1605, doi:10.1175/2007JAS2456.1.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 2842–2858, doi:10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., C. Hohenegger, J. Schmidli, C. S. Bretherton, and C. Schär, 2011: An idealized cloud-resolving framework for the study of midlatitude diurnal convection over land. J. Atmos. Sci., 68, 1041–1057, doi:10.1175/2010JAS3640.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 67–82, doi:10.1007/s00703-005-0113-3.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019–3032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 1443–1462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
  • Su, H., M. F. McCabe, and E. F. Wood, 2005: Modeling evapotranspiration during SMACEX: Comparing two approaches for local- and regional-scale prediction. J. Hydrometeor., 6, 910–922, doi:10.1175/JHM466.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P., C.-H. Moeng, B. Stevens, D. Lenschow, and S. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 3042–3064, doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722–727, doi:10.1038/ngeo950.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., and J. Vilà-Guerau de Arellano, 2008: Relative humidity as an indicator for cloud formation over heterogeneous land surfaces. J. Atmos. Sci., 65, 3263–3277, doi:10.1175/2008JAS2591.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 4800–4816, doi:10.1175/2011JCLI4056.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 1793–1806, doi:10.1175/2008JAS2945.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17703 16608 961
PDF Downloads 876 223 9