A Compensatory Approach of the Fixed Localization in EnKF

Xinrong Wu Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin, China

Search for other papers by Xinrong Wu in
Current site
Google Scholar
PubMed
Close
,
Wei Li Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin, China

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
,
Guijun Han Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin, China

Search for other papers by Guijun Han in
Current site
Google Scholar
PubMed
Close
,
Shaoqing Zhang NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by Shaoqing Zhang in
Current site
Google Scholar
PubMed
Close
, and
Xidong Wang Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin, China

Search for other papers by Xidong Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While fixed covariance localization can greatly increase the reliability of the background error covariance in filtering by suppressing the long-distance spurious correlations evaluated by a finite ensemble, it may degrade the assimilation quality in an ensemble Kalman filter (EnKF) as a result of restricted longwave information. Tuning an optimal cutoff distance is usually very expensive and time consuming, especially for a general circulation model (GCM). Here the authors present an approach to compensate the demerit in fixed localization. At each analysis step, after the standard EnKF is done, a multiple-scale analysis technique is used to extract longwave information from the observational residual (referred to the EnKF ensemble mean). Within a biased twin-experiment framework consisting of a global barotropical spectral model and an idealized observing system, the performance of the new method is examined. Compared to a standard EnKF, the hybrid method is superior when an overly small/large cutoff distance is used, and it has less dependence on cutoff distance. The new scheme is also able to improve short-term weather forecasts, especially when an overly large cutoff distance is used. Sensitivity studies show that caution should be taken when the new scheme is applied to a dense observing system with an overly small cutoff distance in filtering. In addition, the new scheme has a nearly equivalent computational cost to the standard EnKF; thus, it is particularly suitable for GCM applications.

Corresponding author address: Xinrong Wu, 93 Liuwei Rd., Hedong District, Tianjin, 300171, China. E-mail: xinrong_wu@yahoo.com

Abstract

While fixed covariance localization can greatly increase the reliability of the background error covariance in filtering by suppressing the long-distance spurious correlations evaluated by a finite ensemble, it may degrade the assimilation quality in an ensemble Kalman filter (EnKF) as a result of restricted longwave information. Tuning an optimal cutoff distance is usually very expensive and time consuming, especially for a general circulation model (GCM). Here the authors present an approach to compensate the demerit in fixed localization. At each analysis step, after the standard EnKF is done, a multiple-scale analysis technique is used to extract longwave information from the observational residual (referred to the EnKF ensemble mean). Within a biased twin-experiment framework consisting of a global barotropical spectral model and an idealized observing system, the performance of the new method is examined. Compared to a standard EnKF, the hybrid method is superior when an overly small/large cutoff distance is used, and it has less dependence on cutoff distance. The new scheme is also able to improve short-term weather forecasts, especially when an overly large cutoff distance is used. Sensitivity studies show that caution should be taken when the new scheme is applied to a dense observing system with an overly small cutoff distance in filtering. In addition, the new scheme has a nearly equivalent computational cost to the standard EnKF; thus, it is particularly suitable for GCM applications.

Corresponding author address: Xinrong Wu, 93 Liuwei Rd., Hedong District, Tianjin, 300171, China. E-mail: xinrong_wu@yahoo.com
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634–642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007a: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99–111, doi:10.1016/j.physd.2006.02.011.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007b: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210–224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 72–83, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758, doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and L. L. Lei, 2013: Empirical localization of observation impact in ensemble Kalman filters. Mon. Wea. Rev., 141, 4140–4153, doi:10.1175/MWR-D-12-00330.1.

    • Search Google Scholar
    • Export Citation
  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490, doi:10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berre, L., and G. Desroziers, 2010: Filtering of background error variance and correlations by local spatial averaging: A review. Mon. Wea. Rev., 138, 3693–3720, doi:10.1175/2010MWR3111.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2007: Flow adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 2029–2044, doi:10.1002/qj.169.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61A, 84–96, doi:10.1111/j.1600-0870.2008.00371.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97–111, doi:10.1111/j.1600-0870.2008.00372.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-Var state estimation. Mon. Wea. Rev., 139, 1241–1255, doi:10.1175/2010MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., D. Hodyss, P. Steinle, H. Sims, A. M. Clayton, A. C. Lorenc, D. M. Barker, and M. Buehner, 2011: Efficient ensemble covariance localization in variational data assimilation. Mon. Wea. Rev., 139, 573–580, doi:10.1175/2010MWR3405.1.

    • Search Google Scholar
    • Export Citation
  • Bratseth, A. M., 1986: Statistical interpolation by means of successive corrections. Tellus, 38A, 439–447, doi:10.1111/j.1600-0870.1986.tb00476.x.

    • Search Google Scholar
    • Export Citation
  • Briggs, W. L., V. E. Henson, and S. F. McCormick, 2000: A Multigrid Tutorial. 2nd ed. Society for Industrial and Applied Mathematics, 193 pp.

  • Buehner, M., 2012: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Wea. Rev., 140, 617–636, doi:10.1175/MWR-D-10-05052.1.

    • Search Google Scholar
    • Export Citation
  • Deckmyn, A., and L. Berre, 2005: A wavelet approach to representing background error covariances in a limited-area model. Mon. Wea. Rev., 133, 1279–1294, doi:10.1175/MWR2929.1.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer Press, 187 pp.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511–522, doi:10.1175/2010MWR3328.1.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. 2nd ed. Wiley, 477 pp.

  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905–2919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776–2790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., K. Arpe, M. Tiedtke, M. Capaldo, and H. Savijärvi, 1980: The performance of a medium-range forecast model in winter—Impact of physical parameterizations. Mon. Wea. Rev., 108, 1736–1773, doi:10.1175/1520-0493(1980)108<1736:TPOAMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123–137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. K. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 2126–2143, doi:10.1175/2008MWR2737.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Jun, M., I. Szunyogh, M. G. Genton, F. Zhang, and C. H. Bishop, 2011: A statistical investigation of the sensitivity of ensemble-based Kalman filters to covariance filtering. Mon. Wea. Rev., 139, 3036–3051, doi:10.1175/2011MWR3577.1.

    • Search Google Scholar
    • Export Citation
  • Kondo, K., T. Miyoshi, and H. L. Tanaka, 2013: Parameter sensitivities of the dual-localization approach in the local ensemble transform Kalman filter. SOLA, 9, 174–178, doi:10.2151/sola.2013-039.

    • Search Google Scholar
    • Export Citation
  • Lei, L. L., and J. L. Anderson, 2014: Empirical localization of observations for serial ensemble Kalman filter data assimilation in an atmospheric general circulation model. Mon. Wea. Rev., 142, 1835–1851, doi:10.1175/MWR-D-13-00288.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., E. Kalnay, and T. Miyoshi, 2009: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 523–533, doi:10.1002/qj.371.

    • Search Google Scholar
    • Export Citation
  • Li, W., Y. Xie, Z. He, G. Han, K. Liu, J. Ma, and D. Li, 2008: Application of the multigrid data assimilation scheme to the China Seas’ temperature forecast. J. Atmos. Oceanic Technol., 25, 2106–2116, doi:10.1175/2008JTECHO510.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., Y. Xie, S.-M. Deng, and Q. Wang, 2010: Application of the multigrid method to the two-dimensional Doppler radar radial velocity data assimilation. J. Atmos. Oceanic Technol., 27, 319–332, doi:10.1175/2009JTECHA1271.1.

    • Search Google Scholar
    • Export Citation
  • Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS method for large scale optimization. Math. Program., 45, 503–528, doi:10.1007/BF01589116.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-VAR. Quart. J. Roy. Meteor. Soc., 129, 3183–3203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 2791–2808, doi:10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519–1535, doi:10.1175/2010MWR3570.1.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and K. Kondo, 2013: A multi-scale localization approach to an ensemble Kalman filter. SOLA, 9, 170–173, doi:10.2151/sola.2013-038.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428, doi:10.1111/j.1600-0870.2004.00076.x.

    • Search Google Scholar
    • Export Citation
  • Pannekoucke, O., 2009: Heterogeneous correlation modeling based on the wavelet diagonal assumption and on the diffusion operator. Mon. Wea. Rev., 137, 2995–3012, doi:10.1175/2009MWR2783.1.

    • Search Google Scholar
    • Export Citation
  • Pannekoucke, O., and S. Massart, 2008: Estimation of the local diffusion tensor and normalization for heterogeneous correlation modeling using a diffusion equation. Quart. J. Roy. Meteor. Soc., 134, 1425–1438, doi:10.1002/qj.288.

    • Search Google Scholar
    • Export Citation
  • Pannekoucke, O., L. Berre, and G. Desroziers, 2007: Filtering properties of wavelets for local background error correlations. Quart. J. Roy. Meteor. Soc., 133, 363–379, doi:10.1002/qj.33.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 1536–1548, doi:10.1175/2543.1.

    • Search Google Scholar
    • Export Citation
  • Rainwater, S., and B. Hunt, 2013: Mixed-resolution ensemble data assimilation. Mon. Wea. Rev., 141, 3007–3021, doi:10.1175/MWR-D-12-00234.1.

    • Search Google Scholar
    • Export Citation
  • Robert, A., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG Symp. on NWP, Tokyo, Japan, Japan Meteorological Society, 19–24.

  • Szunyogh, I., E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. Ott, and J. A. Yorke, 2005: Assessing a local ensemble Kalman filter: Perfect model experiments with the National Centers for Environmental Prediction global model. Tellus, 57A, 528–545, doi:10.1111/j.1600-0870.2005.00136.x.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and J. A. Yorke, 2008: A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus, 60A, 113–130, doi:10.1111/j.1600-0870.2007.00274.x.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., and P. Courtier, 2001: Correlation modeling on a sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127, 1815–1846, doi:10.1002/qj.49712757518.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., and I. Mirouze, 2013: On the diffusion equation and its application to isotropic and anisotropic correlation modeling in variational assimilation. Quart. J. Roy. Meteor. Soc., 139, 242–260, doi:10.1002/qj.1955.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463–482, doi:10.1175/2007MWR2018.1.

    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905–2916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., S. Koch, J. McGinley, S. Albers, P. E. Bieringer, M. Wolfson, and M. Chan, 2011: A space–time multiscale analysis system: A sequential variational analysis approach. Mon. Wea. Rev., 139, 1224–1240, doi:10.1175/2010MWR3338.1.

    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., and D. Nechaev, 2013: Covariance localization with the diffusion-based correlation models. Mon. Wea. Rev., 141, 848–860, doi:10.1175/MWR-D-12-00089.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with ensemble Kalman filter. Mon. Wea. Rev., 132, 1238–1253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. Sippel, and C. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105–2125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., J. L. Anderson, A. Rosati, M. J. Harrison, S. P. Khare, and A. Wittenberg, 2004: Multiple time level adjustment for data assimilation. Tellus, 56A, 2–15, doi:10.1111/j.1600-0870.2004.00040.x.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., F. Zheng, and X.-C. Li, 2011: A new localization implementation scheme for ensemble data assimilation for non-local observations. Tellus, 63A, 244–255, doi:10.1111/j.1600-0870.2010.00486.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2059 1716 332
PDF Downloads 233 45 0