The Climatology and Characteristics of Rossby Wave Packets Using a Feature-Based Tracking Technique

Matthew B. Souders School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Matthew B. Souders in
Current site
Google Scholar
PubMed
Close
,
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
, and
Edmund K. M. Chang School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Edmund K. M. Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes an objective, track-based climatology of Rossby wave packets (RWPs). NCEP–NCAR reanalysis wind and geopotential height data at 300 hPa every 6 h were spectrally filtered using a Hilbert transform technique under the assumption that RWPs propagate along a waveguide defined by the 14-day running average of the 300-hPa wind. Track data and feature-based descriptive statistics, including area, average intensity, intensity volume (intensity multiplied by area), intensity-weighted centroid position, and velocity, were gathered to describe the interannual, annual, seasonal, and regime-based climatology of RWPs. RWPs have a more pronounced seasonal cycle in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). RWPs are nearly nonexistent in the summer months (June–August; JJA) in the NH, while there is nearly continuous RWP activity downstream of South Africa during austral summer (December–February; DJF). Interannual variability in RWP frequency and intensity in the Northern Hemisphere is found to be strongly connected with the large-scale flow regimes such as El Niño–Southern Oscillation and the Arctic Oscillation. Enhanced RWP activity is also found to coherently propagate from the Pacific into the Atlantic on average when the Arctic Oscillation switches from a positive to a negative phase. No significant long-term (~30 yr) trend in RWP frequency, activity, or amplitude is found.

Corresponding author address: Dr. Brian A. Colle, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000. E-mail: brian.colle@stonybrook.edu

Abstract

This paper describes an objective, track-based climatology of Rossby wave packets (RWPs). NCEP–NCAR reanalysis wind and geopotential height data at 300 hPa every 6 h were spectrally filtered using a Hilbert transform technique under the assumption that RWPs propagate along a waveguide defined by the 14-day running average of the 300-hPa wind. Track data and feature-based descriptive statistics, including area, average intensity, intensity volume (intensity multiplied by area), intensity-weighted centroid position, and velocity, were gathered to describe the interannual, annual, seasonal, and regime-based climatology of RWPs. RWPs have a more pronounced seasonal cycle in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). RWPs are nearly nonexistent in the summer months (June–August; JJA) in the NH, while there is nearly continuous RWP activity downstream of South Africa during austral summer (December–February; DJF). Interannual variability in RWP frequency and intensity in the Northern Hemisphere is found to be strongly connected with the large-scale flow regimes such as El Niño–Southern Oscillation and the Arctic Oscillation. Enhanced RWP activity is also found to coherently propagate from the Pacific into the Atlantic on average when the Arctic Oscillation switches from a positive to a negative phase. No significant long-term (~30 yr) trend in RWP frequency, activity, or amplitude is found.

Corresponding author address: Dr. Brian A. Colle, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000. E-mail: brian.colle@stonybrook.edu
Save
  • Altenhoff, A. M., O. Martius, M. Croci-Maspoli, C. Schwierz, and H. C. Davies, 2008: Linkage of atmospheric blocks and synoptic-scale Rossby waves: A climatological analysis. Tellus, 60, 10531063, doi:10.1111/j.1600-0870.2008.00354.x.

    • Search Google Scholar
    • Export Citation
  • Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32263247, doi:10.1175/2008MWR2249.1.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bozart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Arnaud, Y., M. Desbois, and J. Maizi, 1992: Automatic tracking and characterization of African convective systems on Meteosat pictures. J. Appl. Meteor., 31, 443451, doi:10.1175/1520-0450(1992)031<0443:ATACOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., H. Nakamura, and T. Yamagata, 2007: Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere storm-track activity during austral winter. J. Climate, 20, 31473163, doi:10.1175/JCLI4155.1.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., Y. H. Lee, and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961980, doi:10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56, 17291747, doi:10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2001: The structure of baroclinic wave packets. J. Atmos. Sci., 58, 16941713, doi:10.1175/1520-0469(2001)058<1694:TSOBWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2005: The role of wave packets in wave–mean flow interactions during Southern Hemisphere summer. J. Atmos. Sci., 62, 24672483, doi:10.1175/JAS3491.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2013: CMIP5 projection of significant reduction in extratropical cyclone activity over North America. J. Climate, 26, 99039922, doi:10.1175/JCLI-D-13-00209.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 17081728, doi:10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642658, doi:10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charles, M. E., and B. A. Colle, 2009: Verification of extratropical cyclones within the NCEP operational models. Part I: Analysis errors and short-term NAM and GFS forecasts. Wea. Forecasting, 24, 11731190, doi:10.1175/2009WAF2222169.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2004: Storm track predictability on seasonal and decadal time scales. J. Climate, 17, 37013720, doi:10.1175/1520-0442(2004)017<3701:STPOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and C. Franzke, 2006: Are the North Atlantic Oscillation and the northern annular mode distinguishable? J. Atmos. Sci., 63, 29152930, doi:10.1175/JAS3798.1.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, doi:10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Glatt, I., and V. Wirth, 2014: Identifying Rossby wave trains and quantifying their properties. Quart. J. Roy. Meteor. Soc., 140, 384396, doi:10.1002/qj.2139.

    • Search Google Scholar
    • Export Citation
  • Glatt, I., A. Dornbrack, S. Jones, J. Keller, O. Martius, A. Muller, D. Peters, and V. Wirth, 2011: Ultility of Hovmöller diagrams to diagnosis Rossby wave trains. Tellus, 63, 9911006, doi:10.1111/j.1600-0870.2011.00541.x.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., and E. K. M. Chang, 2008: Impacts of assimilation of satellite and rawinsonde observations on Southern Hemisphere baroclinic wave activity in the NCEP–NCAR reanalysis. J. Climate, 21, 32903309, doi:10.1175/2007JCLI2189.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, doi:10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2005: Vertical structure of midlatitude analysis and forecast errors. Mon. Wea. Rev., 133, 567578, doi:10.1175/MWR-2882.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, doi:10.1175/2008MWR2558.1.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50, 14131428, doi:10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2012: Contributions of downstream eddy development to the teleconnection between ENSO and the atmospheric circulation over the North Atlantic. J. Climate, 25, 49935010, doi:10.1175/JCLI-D-11-00377.1.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., K. J. Sellwood, D. Hodyss, Z. Toth, and Y. C. Song, 2010: Characteristics of target areas selected by the ensemble transform Kalman filter for medium-range forecasts of high-impact winter weather. Mon. Wea. Rev., 138, 28032824, doi:10.1175/2010MWR3106.1.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 25762592, doi:10.1175/JAS3977.1.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2008: Far-upstream precursors of heavy precipitation events on the Alpine south-side. Quart. J. Roy. Meteor. Soc., 134, 417428, doi:10.1002/qj.229.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2010: Tropopause level waveguides. J. Atmos. Sci., 67, 866879, doi:10.1175/2009JAS2995.1.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., and D. L. T. Anderson, 1984: A simple model of the El Niño and Southern Oscillation. Mon. Wea. Rev., 112, 934946, doi:10.1175/1520-0493(1984)112<0934:ASMOEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the North Pacific. J. Atmos. Sci., 49, 16291642, doi:10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62, 13671390, doi:10.1175/JAS3428.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, doi:10.1034/j.1600-0870.1995.00108.x.

    • Search Google Scholar
    • Export Citation
  • Riviere, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, doi:10.1175/JAS3850.1.

    • Search Google Scholar
    • Export Citation
  • Souders, M. B., B. A. Colle, and E. K. M. Chang, 2014: A description and evaluation of an automated approach for feature-based tracking of Rossby wave packets. Mon. Wea. Rev., 142, 35053527, doi:10.1175/MWR-D-13-00317.1.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65, 28612876, doi:10.1175/2008JAS2632.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178, doi:10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and L. Smith, 2009: Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Niño. J. Climate, 22, 29782991, doi:10.1175/2008JCLI2691.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., R. Huang, L. Gu, W. Chen, and L. Kang, 2009: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22, 48604872, doi:10.1175/2009JCLI2973.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. International Geophysical Series, Vol. 91, Academic Press, 627 pp.

  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Climataological Survey, CIMMS–School of Meteorology, University of Oklahoma, 52–57.

  • Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53, 315324, doi:10.1002/j.1477-8696.1998.tb06408.x.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. J. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, doi:10.1175/2007JAS2347.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, M., K. Chang, and B. A. Colle, 2013: Ensemble sensitivity tools for assessing extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 11331156, doi:10.1175/WAF-D-12-00132.1.

    • Search Google Scholar
    • Export Citation
  • Zimin, A. V., I. Szunyogh, D. J. Patil, B. R. Hunt, and E. Ott, 2003: Extracting envelopes of Rossby wave packets. Mon. Wea. Rev., 131, 10111017, doi:10.1175/1520-0493(2003)131<1011:EEORWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zimin, A. V., I. Szunyogh, B. R. Hunt, and E. Ott, 2006: Extracting envelopes of nonzonally propagating Rossby wave packets. Mon. Wea. Rev., 134, 13291333, doi:10.1175/MWR3122.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3849 3278 305
PDF Downloads 597 107 11