On the Mesoscale Structure of Surface Wind and Pressure Fields near Tornadic and Nontornadic Cold Fronts

Matthew R. Clark Met Office, Exeter, Devon, United Kingdom

Search for other papers by Matthew R. Clark in
Current site
Google Scholar
PubMed
Close
and
Douglas J. Parker School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Douglas J. Parker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations from a mesoscale network of automatic weather stations are analyzed for 15 U.K. cold fronts exhibiting narrow cold frontal rainbands (NCFRs). Seven of the NCFRs produced tornadoes. A time-compositing approach is applied to the minute-resolution data using the radar-observed motion vectors of NCFR precipitation segments. Interpolated onto a 5-km grid, the analyses resolve much of the small-mesoscale structure in surface wind, temperature, and pressure fields. Postfrontal winds varied substantially between cases. Tornadic NCFRs exhibited a near-90° wind veer and little or no reduction in wind speed on NCFR passage; these attributes were generally associated with large vertical vorticity, horizontal convergence, and vorticity stretching at the NCFR. Nontornadic NCFRs exhibited smaller wind veers and/or marked decreases in wind speed across the NCFR, and weaker vorticity, convergence, and vorticity stretching. In at least four tornadic NCFRs, increases in vorticity stretching preceded tornadogenesis. Doppler radar observations of two tornadic NCFRs revealed the development of misocyclones, some tornadic, during the latter stages of vorticity-stretching increase. The presence of cyclonic vortices only, in one case occurring at regular intervals along the NCFR, provides limited circumstantial evidence for horizontal shearing instability (HSI), though other vortex-genesis mechanisms cannot be discounted. Vorticity-stretching increases were associated with coherent mesoscale structures in the postfrontal wind field, which modified the cross-frontal convergence. Where cross-frontal convergence was large, extremely narrow, intense shear zones were observed; results suggest that tornadoes occurred when such shear zones developed in conjunction with conditional instability in the prefrontal environment.

Corresponding author address: Matthew R. Clark, Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, United Kingdom. E-mail: matthew.clark@metoffice.gov.uk

This article is included in the Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) special collection.

Abstract

Observations from a mesoscale network of automatic weather stations are analyzed for 15 U.K. cold fronts exhibiting narrow cold frontal rainbands (NCFRs). Seven of the NCFRs produced tornadoes. A time-compositing approach is applied to the minute-resolution data using the radar-observed motion vectors of NCFR precipitation segments. Interpolated onto a 5-km grid, the analyses resolve much of the small-mesoscale structure in surface wind, temperature, and pressure fields. Postfrontal winds varied substantially between cases. Tornadic NCFRs exhibited a near-90° wind veer and little or no reduction in wind speed on NCFR passage; these attributes were generally associated with large vertical vorticity, horizontal convergence, and vorticity stretching at the NCFR. Nontornadic NCFRs exhibited smaller wind veers and/or marked decreases in wind speed across the NCFR, and weaker vorticity, convergence, and vorticity stretching. In at least four tornadic NCFRs, increases in vorticity stretching preceded tornadogenesis. Doppler radar observations of two tornadic NCFRs revealed the development of misocyclones, some tornadic, during the latter stages of vorticity-stretching increase. The presence of cyclonic vortices only, in one case occurring at regular intervals along the NCFR, provides limited circumstantial evidence for horizontal shearing instability (HSI), though other vortex-genesis mechanisms cannot be discounted. Vorticity-stretching increases were associated with coherent mesoscale structures in the postfrontal wind field, which modified the cross-frontal convergence. Where cross-frontal convergence was large, extremely narrow, intense shear zones were observed; results suggest that tornadoes occurred when such shear zones developed in conjunction with conditional instability in the prefrontal environment.

Corresponding author address: Matthew R. Clark, Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, United Kingdom. E-mail: matthew.clark@metoffice.gov.uk

This article is included in the Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) special collection.

Save
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969, doi:10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1994a: Applications of the Barnes objective analysis scheme. Part I: Effects of undersampling, wave position, and station randomness. J. Atmos. Oceanic Technol., 11, 14331448, doi:10.1175/1520-0426(1994)011<1433:AOTBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1994b: Applications of the Barnes objective analysis scheme. Part II: Improving derivative estimates. J. Atmos. Oceanic Technol., 11, 14491458, doi:10.1175/1520-0426(1994)011<1449:AOTBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and A. J. Thorpe, 1994: Frontal wave stability during moist deformation frontogenesis. Part II: The suppression of nonlinear wave development. J. Atmos. Sci., 51, 874888, doi:10.1175/1520-0469(1994)051<0874:FWSDMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, M. J., J. D. Locatelli, M. T. Stoelinga, and P. V. Hobbs, 1999: Numerical modelling of precipitation cores on cold fronts. J. Atmos. Sci., 56, 11751196, doi:10.1175/1520-0469(1999)056<1175:NMOPCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

  • Browning, K. A., 1995: On the nature of the mesoscale circulations at a kata-cold front. Tellus, 47A, 911919, doi:10.1034/j.1600-0870.1995.00128.x.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399, doi:10.1256/qj.02.143.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front. Quart. J. Roy. Meteor. Soc., 96, 369389, doi:10.1002/qj.49709640903.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. W. Pardoe, 1973: Structure of low-level jet streams ahead of mid-latitude cold fronts. Quart. J. Roy. Meteor. Soc., 99, 619638, doi:10.1002/qj.49709942204.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and G. A. Monk, 1982: A simple model for the synoptic analysis of cold fronts. Quart. J. Roy. Meteor. Soc., 108, 435452, doi:10.1002/qj.49710845609.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and F. F. Hill, 1984: Structure and evolution of a mesoscale convective system near the British Isles. Quart. J. Roy. Meteor. Soc., 110, 897913, doi:10.1002/qj.49711046607.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Reynolds, 1994: Diagnostic study of a narrow cold-frontal rainband and severe winds associated with a stratospheric intrusion. Quart. J. Roy. Meteor. Soc., 120, 235257, doi:10.1002/qj.49712051602.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., N. M. Roberts, and A. J. Illingworth, 1997: Mesoscale analysis of the activation of a cold front during cyclogenesis. Quart. J. Roy. Meteor. Soc., 123, 23492375, doi:10.1002/qj.49712354410.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., D. Jerrett, J. Nash, T. Oakley, and N. M. Roberts, 1998: Cold frontal structure derived from radar wind profilers. Meteor. Appl., 5, 6774, doi:10.1017/S1350482798000784.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258279, doi:10.1175/1520-0469(1982)039<0258:ASFRPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1983: A severe frontal rainband. Part II: Tornado parent vortex circulation. J. Atmos. Sci., 40, 26392654, doi:10.1175/1520-0469(1983)040<2639:ASFRPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, M. R., 2012: Doppler radar observations of non-occluding, cyclic vortex-genesis within a long-lived tornadic storm over southern England. Quart. J. Roy. Meteor. Soc., 138, 439454, doi:10.1002/qj.924.

    • Search Google Scholar
    • Export Citation
  • Clark, M. R., 2013: A provisional climatology of cool-season convective lines in the UK. Atmos. Res., 123, 180196, doi:10.1016/j.atmosres.2012.09.018.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2006: Life-cycle simulations of shallow frontal waves and the impact of deformation strain. Quart. J. Roy. Meteor. Soc., 132, 21712190, doi:10.1256/qj.05.238.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., P. H. Haynes, M. N. Juckes, and T. G. Shepherd, 1991: The stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech., 230, 647665, doi:10.1017/S0022112091000915.

    • Search Google Scholar
    • Export Citation
  • Elsom, D. M., 1985: Tornadoes formed in association with a cold front: The example of the outbreak of 21 tornadoes on 8 February 1984. J. Meteor., 10, 415.

    • Search Google Scholar
    • Export Citation
  • Ferris, P. D., 1989: Frontal structure in a mesoscale model. Ph.D. thesis, University of Reading, Reading, United Kingdom, 202 pp.

  • Fujita, T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405436, doi:10.1111/j.2153-3490.1955.tb01181.x.

  • Fujita, T., 1958: Mesoanalysis of the Illinois tornadoes of 9 April 1953. J. Meteor., 15, 288296, doi:10.1175/1520-0469(1958)015<0288:MOTITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gatzen, C., 2011: A 10-year climatology of cold-season narrow cold-frontal rainbands in Germany. Atmos. Res., 100, 366370, doi:10.1016/j.atmosres.2010.09.018.

    • Search Google Scholar
    • Export Citation
  • Green, A., 2010: From observations to forecasts—Part 7: A new meteorological monitoring system for the United Kingdom’s Met Office. Weather, 65, 272277, doi:10.1002/wea.649.

    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., 2000: Forecasting the precipitation associated with a mid-Atlantic States cold frontal rainband. Natl. Wea. Dig., 24, 3751.

    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., and M. Glazewski, 2004: Thunderstorm types associated with the “broken-S” radar signature. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P7.1. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81537.htm.]

  • Haurwitz, B., 1949: The instability of wind discontinuities and shear zones in planetary atmospheres. J. Meteor., 6, 200206, doi:10.1175/1520-0469(1949)006<0200:TIOWDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and K. R. Biswas, 1979: The cellular structure of narrow cold-frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 723727, doi:10.1002/qj.49710544516.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: The substructure of narrow cold frontal rainbands. J. Atmos. Sci., 39, 280295, doi:10.1175/1520-0469(1982)039<0280:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics.Academic Press, 573 pp.

  • Houze, R. A., Jr., P. V. Hobbs, K. R. Biswas, and W. M. Davis, 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868878, doi:10.1175/1520-0493(1976)104<0868:MRIEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • James, P. K., and K. A. Browning, 1979: Mesoscale structure of line convection at surface cold fronts. Quart. J. Roy. Meteor. Soc., 105, 371382, doi:10.1002/qj.49710544404.

    • Search Google Scholar
    • Export Citation
  • James, P. K., K. A. Browning, R. Gunawardana, and J. A. Edwards, 1978: A case of line convection observed by radar using a high resolution colour display. Weather, 33, 212214, doi:10.1002/j.1477-8696.1978.tb04667.x.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, doi:10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., X. Pu, P. O. G. Persson, and W. Tao, 2003: Variations associated with cores and gaps of a Pacific narrow cold frontal rainband. Mon. Wea. Rev., 131, 27052729, doi:10.1175/1520-0493(2003)131<2705:VAWCAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawashima, M., 2007: Numerical study of precipitation core-gap structure along cold fronts. J. Atmos. Sci., 64, 23552377, doi:10.1175/JAS3987.1.

    • Search Google Scholar
    • Export Citation
  • Klimowski, B. A., M. R. Hjelmfelt, and M. J. Bunkers, 2004: Radar observations of the early evolution of bow echoes. Wea. Forecasting, 19, 727734, doi:10.1175/1520-0434(2004)019<0727:ROOTEE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, F., Y. Sugawara, M. Imai, M. Matsui, A. Yoshida, and Y. Tamura, 2007: Tornado generation in a narrow cold frontal rainband—Fujisawa tornado on April 20, 2006. SOLA, 3, 2124, doi:10.2151/sola.2007-006.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and P. J. Kocin, 1991: Frontal contraction processes leading to the formation of an intense narrow rainband. Meteor. Atmos. Phys., 46, 123154, doi:10.1007/BF01027339.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and C. O’Handley, 1997: Operational forecasting and detection of mesoscale gravity waves. Wea. Forecasting, 12, 253281, doi:10.1175/1520-0434(1997)012<0253:OFADOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and S. Saleeby, 2001: An automated system for the analysis of gravity waves and other mesoscale phenomena. Wea. Forecasting, 16, 661679, doi:10.1175/1520-0434(2001)016<0661:AASFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, J. D., and P. D. Moore, 2006: Observations of a non-supercell tornadic thunderstorm from terminal Doppler weather radar. 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P4.5. [Available online at https://ams.confex.com/ams/23SLS/webprogram/Paper115102.html.]

  • Locatelli, J. D., J. E. Martin, and P. V. Hobbs, 1995: Development and propagation of precipitation cores on cold fronts. Atmos. Res., 38, 177206, doi:10.1016/0169-8095(94)00093-S.

    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 17491768, doi:10.1175/MWR3367.1.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., K. A. Browning, J. C. Nicol, D. J. Parker, E. G. Norton, A. M. Blyth, U. Corsmeier, and F. M. Perry, 2010: Multi-sensor observations of a wave beneath an impacting rear-inflow jet in an elevated mesoscale convective system. Quart. J. Roy. Meteor. Soc., 136, 17881812, doi:10.1002/qj.669.

    • Search Google Scholar
    • Export Citation
  • Matejka, T. J., R. A. Houze Jr., and P. V. Hobbs, 1980: Microphysics and dynamics of the clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 2956, doi:10.1002/qj.49710644704.

    • Search Google Scholar
    • Export Citation
  • Meaden, G. T., and M. W. Rowe, 1985: The great tornado outbreak of 23 November 1981 in which North Wales, central and eastern England had 105 known tornadoes in about five hours. J. Meteor., 10, 295300.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., and L. N. Howard, 1964: Note on heterogeneous shear flow. J. Fluid Mech., 20, 331336, doi:10.1017/S0022112064001252.

  • Moore, G. W. K., 1985: The organization of convection in narrow cold-frontal rainbands. J. Atmos. Sci., 42, 17771791, doi:10.1175/1520-0469(1985)042<1777:TOOCIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolen, R. H., 1959: A radar pattern associated with tornadoes. Bull. Amer. Meteor. Soc., 40, 277279.

  • Przybylinski, R. W., and D. M. DeCaire, 1985: Radar signatures associated with the derecho: One type of mesoscale convective system. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 228231.

  • Smart, D. J., and K. A. Browning, 2009: Morphology and evolution of cold-frontal misocyclones. Quart. J. Roy. Meteor. Soc., 135, 381393, doi:10.1002/qj.399.

    • Search Google Scholar
    • Export Citation
  • Sugawara, Y., and F. Kobayashi, 2009: Vertical structure of misocyclones along a narrow cold frontal rainband. J. Meteor. Soc. Japan, 87, 497503, doi:10.2151/jmsj.87.497.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823, doi:10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, S., D. M. Elsom, and G. T. Meaden, 1986: An outbreak of 31 tornadoes associated with a cold front in southern England on 20 October 1981. J. Meteor., 11, 3750.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and B. L. Bosart, 2000: Airborne radar observations of a cold front during FASTEX. Mon. Wea. Rev., 128, 24472470, doi:10.1175/1520-0493(2000)128<2447:AROOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670, doi:10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803, doi:10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1038 558 63
PDF Downloads 299 104 2