Evaluating the Antarctic Observational Network with the Antarctic Mesoscale Prediction System (AMPS)

Karin A. Bumbaco Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Karin A. Bumbaco in
Current site
Google Scholar
PubMed
Close
,
Gregory J. Hakim Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
,
Guillaume S. Mauger Climate Impacts Group, University of Washington, Seattle, Washington

Search for other papers by Guillaume S. Mauger in
Current site
Google Scholar
PubMed
Close
,
Natalia Hryniw Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Natalia Hryniw in
Current site
Google Scholar
PubMed
Close
, and
Eric J. Steig Quaternary Research Center and Department of Earth and Space Sciences, University of Washington, Seattle, Washington

Search for other papers by Eric J. Steig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Station siting for environmental observing networks is usually made subjectively, which suggests that the monitoring goals for the network may not be met optimally or cost effectively. In Antarctica, where harsh weather conditions make it difficult to install and maintain stations, practical considerations have largely guided the development of the staffed and automated weather station network. The current network coverage in Antarctica is evaluated as a precursor to optimal network design. The Antarctic Mesoscale Prediction System (AMPS) 0000 UTC analysis is used for 4 years (2008–12) with 15-km horizontal grid spacing, and results show that AMPS reproduces the daily correlations in surface temperature and pressure observed between weather stations across the continent. Temperature correlation length scales are greater in East Antarctica than in West Antarctica (including the Antarctic Peninsula), implying that more stations per unit area are needed to sample weather in West Antarctica compared to East Antarctica. There is variability in the temperature correlation length scales within these regions, emphasizing the need for objective studies such as this one for determining the impact of current and new stations. Further analysis shows that large regions are not well sampled by the current network, particularly on daily time scales. Observations are particularly limited in West Antarctica. Combined with the shorter temperature correlation length scales, this implies that West Antarctica is a compelling location for implementing an objective, optimal network design approach.

Corresponding author address: Karin A. Bumbaco, Joint Institute for the Study of Atmosphere and Ocean, University of Washington, 3737 Brooklyn Ave. NE, Seattle, WA 98105. E-mail: kbumbaco@uw.edu

Abstract

Station siting for environmental observing networks is usually made subjectively, which suggests that the monitoring goals for the network may not be met optimally or cost effectively. In Antarctica, where harsh weather conditions make it difficult to install and maintain stations, practical considerations have largely guided the development of the staffed and automated weather station network. The current network coverage in Antarctica is evaluated as a precursor to optimal network design. The Antarctic Mesoscale Prediction System (AMPS) 0000 UTC analysis is used for 4 years (2008–12) with 15-km horizontal grid spacing, and results show that AMPS reproduces the daily correlations in surface temperature and pressure observed between weather stations across the continent. Temperature correlation length scales are greater in East Antarctica than in West Antarctica (including the Antarctic Peninsula), implying that more stations per unit area are needed to sample weather in West Antarctica compared to East Antarctica. There is variability in the temperature correlation length scales within these regions, emphasizing the need for objective studies such as this one for determining the impact of current and new stations. Further analysis shows that large regions are not well sampled by the current network, particularly on daily time scales. Observations are particularly limited in West Antarctica. Combined with the shorter temperature correlation length scales, this implies that West Antarctica is a compelling location for implementing an objective, optimal network design approach.

Corresponding author address: Karin A. Bumbaco, Joint Institute for the Study of Atmosphere and Ocean, University of Washington, 3737 Brooklyn Ave. NE, Seattle, WA 98105. E-mail: kbumbaco@uw.edu
Save
  • Bromwich, D. H., J. J. Cassano, T. Klein, G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129, 22902309, doi:10.1175/1520-0493(2001)129<2290:MMOKWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. J. Monaghan, K. W. Manning, and J. G. Powers, 2005: Real-time forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133, 579603, doi:10.1175/MWR-2881.1.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2013a: Central west Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 6, 139145, doi:10.1038/ngeo1671.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013b: Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res. Atmos., 118, 274292, doi:10.1029/2012JD018139.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: A synthesis of Antarctic temperatures. J. Climate, 20, 40964117, doi:10.1175/JCLI4236.1.

  • Ding, Q., and E. J. Steig, 2013: Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Climate, 26, 75707585, doi:10.1175/JCLI-D-12-00729.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., D. H. Bromwich, and J. J. Cassano, 2003: Evaluation of Polar MM5 simulations of Antarctic atmospheric of Antarctic atmospheric circulation. Mon. Wea. Rev., 131, 384411, doi:10.1175/1520-0493(2003)131<0384:EOPMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huntley, H., and G. Hakim, 2010: Assimilation of time-averaged observations in a quasi-geostrophic atmospheric jet model. Climate Dyn., 35, 9951009, doi:10.1007/s00382-009-0714-5.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. S. Jacobs, S. D. McPhail, J. R. Perrett, A. T. Webb, and D. White, 2010: Observations beneath Pine Island Glacier in West Antarctica and implications for it retreat. Nat. Geosci., 3, 468472, doi:10.1038/ngeo890.

    • Search Google Scholar
    • Export Citation
  • King, J. C., and J. C. Comiso, 2003: The spatial coherence of interannual temperature variations in the Antarctic Peninsula. Geophys. Res. Lett., 30, 1040, doi:10.1029/2002GL015580.

    • Search Google Scholar
    • Export Citation
  • King, J. C., N. P. M. van Lipzig, W. M. Connolley, and J. C. Comiso, 2003: Are temperature variations at Antarctic ice core sites representative of broad-scale climate variations? Seventh Conf. on Polar Meteorology and Oceanography and Joint Symp. on High-Latitude Climate Variations, Hyannis, MA, Amer. Meteor. Soc., 1.8. [Available online at https://ams.confex.com/ams/7POLAR/techprogram/paper_61095.htm.]

  • Kunkel, K. E., D. R. Easterling, K. Hubbard, K. Redmond, K. Andsager, M. C. Kruk, and M. L. Spinar, 2005: Quality control of pre-1948 cooperative observer network data. J. Atmos. Oceanic Technol., 22, 16911705, doi:10.1175/JTECH1816.1.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctica automatic weather station program: 30 years of polar observations. Bull. Amer. Meteor. Soc., 93,15191537, doi:10.1175/BAMS-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Mauger, G. S., K. A. Bumbaco, G. J. Hakim, and P. W. Mote, 2013: Optimal design of a climatological network: Beyond practical considerations. Geosci. Instrum. Method. Data Syst., 2, 199212, doi:10.5194/gi-2-199-2013.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. H. Bromwich, J. G. Powers, and K. W. Manning, 2005: The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. J. Climate, 18, 11741189, doi:10.1175/JCLI3336.1.

    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and influence of marine air intrusions. J. Climate, 24, 4967, doi:10.1175/2010JCLI3522.1.

    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., J. J. Cassano, M. A. Lazzara, and L. M. Keller, 2012: Case study of a barrier wind corner jet off the coast of Prince Olav Mountains, Antarctica. Mon. Wea. Rev., 140, 20442063, doi:10.1175/MWR-D-11-00261.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 1997: On the forcing of seasonal changes in surface pressure over Antarctica. J. Geophys. Res., 102, 13 78513 792, doi:10.1029/96JD02959.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 2007: Reexamination of near-surface airflow over the Antarctic Continent and implications on atmospheric circulations at high southern latitudes. Mon. Wea. Rev., 135, 19611973, doi:10.1175/MWR3374.1.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93,16991712, doi:10.1175/BAMS-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Seefeldt, M. W., and J. J. Cassano, 2012: A description of the Ross Ice Shelf air stream (RAS) through the use of self-organizing maps (SOMs). J. Geophys. Res., 117, D09112, doi:10.1029/2011JD016857.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Steig, E. J., Q. Ding, D. S. Battisti, and A. Jenkins, 2012: Tropical forcing of circumpolar deep water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol., 53, 1928, doi:10.3189/2012AoG60A110.

    • Search Google Scholar
    • Export Citation
  • Steinhoff, D. F., D. H. Bromwich, M. Lambertson, S. L. Knuth, and M. A. Lazzara, 2008: A dynamical investigation of the May 2004 McMurdo Antarctica severe wind event using AMPS. Mon. Wea. Rev., 136, 726, doi:10.1175/2007MWR1999.1.

    • Search Google Scholar
    • Export Citation
  • Thoma, M., A. Jenkins, D. Holland, and S. Jacobs, 2008: Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35, L18602, doi:10.1029/2008GL034939.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., S. Solomon, P. J. Kushner, M. E. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and M. S. Town, 2011: Antarctica. Encyclopedia of Climate and Weather, 2nd ed. S. H. Schneider, T. L. Root, and M. D. Mastrandrea, Eds., Oxford University Press, 63–71.

  • Wilks, D. S., 2011: Exploratory techniques for paired data. Statistical Methods in the Atmospheric Science, 3rd ed. R. Dmowska, D. Hartmann, and H. T. Rossby, Eds., Elsevier, 49–60.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 352 76 5
PDF Downloads 181 49 1