The Impact of Best Track Discrepancies on Global Tropical Cyclone Climatologies using IBTrACS

Carl J. Schreck III Cooperative Institute for Climate and Satellites–North Carolina, North Carolina State University, and NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Carl J. Schreck III in
Current site
Google Scholar
PubMed
Close
,
Kenneth R. Knapp NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Kenneth R. Knapp in
Current site
Google Scholar
PubMed
Close
, and
James P. Kossin NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by James P. Kossin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using the International Best Track Archive for Climate Stewardship (IBTrACS), the climatology of tropical cyclones is compared between two global best track datasets: 1) the World Meteorological Organization (WMO) subset of IBTrACS (IBTrACS-WMO) and 2) a combination of data from the National Hurricane Center and the Joint Typhoon Warning Center (NHC+JTWC). Comparing the climatologies between IBTrACS-WMO and NHC+JTWC highlights some of the heterogeneities inherent in these datasets for the period of global satellite coverage 1981–2010. The results demonstrate the sensitivity of these climatologies to the choice of best track dataset. Previous studies have examined best track heterogeneities in individual regions, usually the North Atlantic and west Pacific. This study puts those regional issues into their global context. The differences between NHC+JTWC and IBTrACS-WMO are greatest in the west Pacific, where the strongest storms are substantially weaker in IBTrACS-WMO. These disparities strongly affect the global measures of tropical cyclone activity because 30% of the world’s tropical cyclones form in the west Pacific. Because JTWC employs similar procedures throughout most of the globe, the comparisons in this study highlight differences between WMO agencies. For example, NHC+JTWC has more 96-kt (~49 m s−1) storms than IBTrACS-WMO in the west Pacific but fewer in the Australian region. This discrepancy probably points to differing operational procedures between the WMO agencies in the two regions. Without better documentation of historical analysis procedures, the only way to remedy these heterogeneities will be through systematic reanalysis.

Corresponding author address: Carl J. Schreck III, Cooperative Institute for Climate and Satellites–NC, 151 Patton Ave., Asheville, NC 28801. E-mail: cjschrec@ncsu.edu

Abstract

Using the International Best Track Archive for Climate Stewardship (IBTrACS), the climatology of tropical cyclones is compared between two global best track datasets: 1) the World Meteorological Organization (WMO) subset of IBTrACS (IBTrACS-WMO) and 2) a combination of data from the National Hurricane Center and the Joint Typhoon Warning Center (NHC+JTWC). Comparing the climatologies between IBTrACS-WMO and NHC+JTWC highlights some of the heterogeneities inherent in these datasets for the period of global satellite coverage 1981–2010. The results demonstrate the sensitivity of these climatologies to the choice of best track dataset. Previous studies have examined best track heterogeneities in individual regions, usually the North Atlantic and west Pacific. This study puts those regional issues into their global context. The differences between NHC+JTWC and IBTrACS-WMO are greatest in the west Pacific, where the strongest storms are substantially weaker in IBTrACS-WMO. These disparities strongly affect the global measures of tropical cyclone activity because 30% of the world’s tropical cyclones form in the west Pacific. Because JTWC employs similar procedures throughout most of the globe, the comparisons in this study highlight differences between WMO agencies. For example, NHC+JTWC has more 96-kt (~49 m s−1) storms than IBTrACS-WMO in the west Pacific but fewer in the Australian region. This discrepancy probably points to differing operational procedures between the WMO agencies in the two regions. Without better documentation of historical analysis procedures, the only way to remedy these heterogeneities will be through systematic reanalysis.

Corresponding author address: Carl J. Schreck III, Cooperative Institute for Climate and Satellites–NC, 151 Patton Ave., Asheville, NC 28801. E-mail: cjschrec@ncsu.edu
Save
  • Aiyyer, A., and C. Thorncroft, 2011: Interannual-to-multidecadal variability of vertical shear and tropical cyclone activity. J. Climate, 24, 29492962, doi:10.1175/2010JCLI3698.1.

    • Search Google Scholar
    • Export Citation
  • Applequist, S., A. Arguez, I. Durre, M. F. Squires, R. S. Vose, and X. Yin, 2012: 1981–2010 U.S. hourly normals. Bull. Amer. Meteor. Soc., 93, 16371640, doi:10.1175/BAMS-D-11-00173.1.

    • Search Google Scholar
    • Export Citation
  • Arguez, A., and R. S. Vose, 2011: The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Amer. Meteor. Soc., 92, 699704, doi:10.1175/2010BAMS2955.1.

    • Search Google Scholar
    • Export Citation
  • Arguez, A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim, and T. W. Owen, 2012: NOAA’s 1981–2010 U.S. climate normals: An overview. Bull. Amer. Meteor. Soc., 93, 16871697, doi:10.1175/BAMS-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Arguez, A., R. S. Vose, and J. Dissen, 2013: Alternative climate normals: Impacts to the energy industry. Bull. Amer. Meteor. Soc., 94, 915917, doi:10.1175/BAMS-D-12-00155.1.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and S. R. Stewart, 2013: Atlantic hurricane season of 2011. Mon. Wea. Rev., 141, 25772596, doi:10.1175/MWR-D-12-00230.1.

    • Search Google Scholar
    • Export Citation
  • Barcikowska, M., F. Feser, and H. von Storch, 2012: Usability of best track data in climate statistics in the western North Pacific. Mon. Wea. Rev., 140, 28182830, doi:10.1175/MWR-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: The 1999 North Atlantic and eastern North Pacific hurricane seasons [in “Climate Assessment for 1999”]. Bull. Amer. Meteor. Soc., 81 (6), S19S22, doi:10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., and Coauthors, 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 11091173, doi:10.1175/2007MWR2074.1.

  • Blake, E. S., and T. B. Kimberlain, 2013: Eastern North Pacific hurricane season of 2011. Mon. Wea. Rev., 141, 13971412, doi:10.1175/MWR-D-12-00192.1.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2014: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The joint typhoon warning center tropical cyclone best-tracks, 1945–2000. Naval Research Laboratory Rep. NRL/MR/7540-02-16, 22 pp.

  • Diamond, H. J., Ed., 2013: The tropics [in “State of the Climate in 2012”]. Bull. Amer. Meteor. Soc., 94 (8), S79S108, doi:10.1175/2013BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., A. M. Lorrey, K. R. Knapp, and D. H. Levinson, 2012: Development of an enhanced tropical cyclone tracks database for the southwest Pacific from 1840 to 2010. Int. J. Climatol., 32, 22402250, doi:10.1002/joc.2412.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., A. M. Lorrey, and J. A. Renwick, 2013: A southwest Pacific tropical cyclone climatology and linkages to the El Niño–Southern Oscillation. J. Climate, 26, 325, doi:10.1175/JCLI-D-12-00077.1.

    • Search Google Scholar
    • Export Citation
  • Durre, I., M. F. Squires, R. S. Vose, X. Yin, A. Arguez, and S. Applequist, 2013: NOAA’s 1981–2010 U.S. climate normals: Monthly precipitation, snowfall, and snow depth. J. Appl. Meteor. Climatol., 52, 23772395, doi:10.1175/JAMC-D-13-051.1.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1972: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Tech. Rep. NESS 36, 15 pp.

  • Dvorak, V. F., 1973: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures (revision of NESS 36). NOAA Tech. Rep. NESS 45, 19 pp.

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, doi:10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 50 pp. [Available online at ftp://satepsanone.nesdis.noaa.gov/Publications/Tropical/Dvorak_1984.pdf.]

  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and G. S. Young, 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135, 35873598, doi:10.1175/MWR3435.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hagen, A. B., and C. W. Landsea, 2012: On the classification of extreme Atlantic hurricanes utilizing mid-twentieth-century monitoring capabilities. J. Climate, 25, 44614475, doi:10.1175/JCLI-D-11-00420.1.

    • Search Google Scholar
    • Export Citation
  • Hagen, A. B., D. Strahan-Sakoskie, and C. Luckett, 2012: A reanalysis of the 1944–53 Atlantic hurricane seasons—The first decade of aircraft reconnaissance. J. Climate, 25, 44414460, doi:10.1175/JCLI-D-11-00419.1.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., J. Kepert, and J. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO/TD 1555, World Meteorological Organization, 54 pp. [Available online at www.wmo.int/pages/prog/www/tcp/documents/WMO_TD_1555_en.pdf.]

  • Hartmann, D. L., and Coauthors, 2014: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Kamahori, H., N. Yamazaki, N. Mannoji, and K. Takahashi, 2006: Variability in intense tropical cyclone days in the western North Pacific. SOLA, 2, 104107, doi:10.2151/sola.2006-027.

    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., 2012: Re-analysis of the eastern North Pacific HURDAT. 30th Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra Beach, FL, Amer. Meteor. Soc., 2B.2. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper204625.html.]

  • Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett., 33, L10805, doi:10.1029/2006GL025881.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., D. P. Brown, J. Courtney, G. M. Gallina, and J. L. Beven, 2010: An evaluation of Dvorak technique–based tropical cyclone intensity estimates. Wea. Forecasting, 25, 13621379, doi:10.1175/2010WAF2222375.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Wea. Rev., 138, 14591473, doi:10.1175/2009MWR3123.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, doi:10.1175/2011BAMS3039.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., J. A. Knaff, C. R. Sampson, G. M. Riggio, and A. D. Schnapp, 2013: A pressure-based analysis of the historical western North Pacific tropical cyclone intensity record. Mon. Wea. Rev., 141, 26112631, doi:10.1175/MWR-D-12-00323.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Koba, H., S. Osano, T. Hagiwara, S. Akashi, and T. Kikuchi, 1989: An evaluation of the rule of CI number determination in Dvorak technique for tropical cyclone crossing the Philippine Islands (in Japanese). J. Meteor. Res., 41, 157163.

    • Search Google Scholar
    • Export Citation
  • Koba, H., T. Hagiwara, S. Osano, and S. Akashi, 1990: Relationship between CI number Dvorak’s technique and minimum sea level pressure or maximum wind speed of tropical cyclone (in Japanese). J. Meteor. Res., 42, 5967.

    • Search Google Scholar
    • Export Citation
  • Koba, H., T. Hagiwara, S. Osano, and S. Akashi, 1991: Relationships between CI number and minimum sea level pressure/maximum wind speed of tropical cyclones. Geophys. Mag., 44, 1525.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, doi:10.1175/BAMS-88-11-1767.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett.,34, L04815, doi:10.1029/2006GL028836.

  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, doi:10.1175/2010JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, doi:10.1175/JCLI-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., and C. P. Guard, 1998: A look at global tropical cyclone activity during 1995: Contrasting high Atlantic activity with low activity in other basins. Mon. Wea. Rev., 126, 11631173, doi:10.1175/1520-0493(1998)126<1163:ALAGTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197202, doi:10.1029/2007EO180001.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic Hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452454, doi:10.1126/science.1128448.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519, doi:10.1175/2009JCLI3034.1.

    • Search Google Scholar
    • Export Citation
  • Levinson, D. H., H. J. Diamond, K. R. Knapp, M. C. Kruk, and E. J. Gibney, 2010: Toward a homogenous global tropical cyclone best-track dataset. Bull. Amer. Meteor. Soc., 91, 377380, doi:10.1175/2010BAMS2930.1.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., T. A. Sabbatelli, and U. Neu, 2007: Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys. Res. Lett., 34, L22707, doi:10.1029/2007GL031781.

    • Search Google Scholar
    • Export Citation
  • Maue, R. N., 2009: Northern Hemisphere tropical cyclone activity. Geophys. Res. Lett., 36, L05805, doi:10.1029/2008GL035946.

  • Maue, R. N., 2011: Recent historically low global tropical cyclone activity. Geophys. Res. Lett., 38, L14803, doi:10.1029/2011GL047711.

  • Nakazawa, T., and S. Hoshino, 2009: Intercomparison of Dvorak parameters in the tropical cyclone datasets over the western North Pacific. SOLA, 5, 3336, doi:10.2151/sola.2009-009.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1999: The HURISK model: An adaptation for the Southern Hemisphere (A user’s manual). Science Applications International Corporation, Monterey, CA, 31 pp.

  • Pielke, R. A., Jr., C. Landsea, M. Mayfield, J. Laver, and R. Pasch, 2005: Hurricanes and global warming. Bull. Amer. Meteor. Soc., 86, 15711575, doi:10.1175/BAMS-86-11-1571.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, doi:10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ren, F., J. Liang, G. Wu, W. Dong, and X. Yang, 2011: Reliability analysis of climate change of tropical cyclone activity over the western North Pacific. J. Climate, 24, 58875898, doi:10.1175/2011JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Saffir, H. S., 1973: Hurricane wind and storm surge. Mil. Eng., 423, 45.

  • SAIC, NHC, JTWC, UCAR/NCAR, and BoM, cited 2014: Global tropical cyclone “best track” position and intensity data. Dataset ds824.1, CISL Research Data Archive, National Center for Atmospheric Research, Boulder, CO. [Available online at http://rda.ucar.edu/datasets/ds824.1/.]

  • Schott, T., and Coauthors, 2012: The Saffir–Simpson hurricane wind scale. National Weather Service Doc., 4 pp. [Available online www.nhc.noaa.gov/pdf/sshws.pdf.]

  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Simpson, R. H., 1974: The hurricane disaster—Potential scale. Weatherwise,27, 169–186, doi:10.1080/00431672.1974.9931702.

  • Smith, A. B., and R. W. Katz, 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, doi:10.1007/s11069-013-0566-5.

    • Search Google Scholar
    • Export Citation
  • Song, J.-J., Y. Wang, and L. Wu, 2010: Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res., 115, D12128, doi:10.1029/2009JD013058.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, doi:10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21, 35803600, doi:10.1175/2008JCLI2178.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2006a: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, doi:10.1175/BAMS-87-9-1195.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2006b: Supplement to: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, S6S9, doi:10.1175/BAMS-87-9-Velden.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, T. R. Knutson, M. Zhao, and J. A. Smith, 2011: North Atlantic tropical storm frequency response to anthropogenic forcing: Projections and sources of uncertainty. J. Climate, 24, 32243238, doi:10.1175/2011JCLI3853.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 2008: Myanmar’s deadly daffodil. Nat. Geosci., 1, 488490, doi:10.1038/ngeo257.

  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wu, M.-C., K.-H. Yeung, and W.-L. Chang, 2006: Trends in western North Pacific tropical cyclone intensity. Eos, Trans. Amer. Geophys. Union,87, 537–538, doi:10.1029/2006EO480001.

  • Yu, H., C. Hu, and L. Jiang, 2007: Comparison of three tropical cyclone intensity datasets. Acta Meteor. Sin., 21, 121–128.

  • Zhang, X., T. Li, F. Weng, C.-C. Wu, and L. Xu, 2007: Reanalysis of western Pacific typhoons in 2004 with multi-satellite observations. Meteor. Atmos. Phys., 97, 318, doi:10.1007/s00703-006-0240-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3907 1209 85
PDF Downloads 3461 1045 81