Regional, Seasonal, and Diurnal Variations of Cloud-to-Ground Lightning with Large Impulse Charge Moment Changes

Nick K. Beavis Colorado State University, Fort Collins, Colorado

Search for other papers by Nick K. Beavis in
Current site
Google Scholar
PubMed
Close
,
Timothy J. Lang NASA Marshall Spaceflight Center, Huntsville, Alabama

Search for other papers by Timothy J. Lang in
Current site
Google Scholar
PubMed
Close
,
Steven A. Rutledge Colorado State University, Fort Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
,
Walter A. Lyons FMA Research, Inc., Fort Collins, Colorado

Search for other papers by Walter A. Lyons in
Current site
Google Scholar
PubMed
Close
, and
Steven A. Cummer Duke University, Durham, North Carolina

Search for other papers by Steven A. Cummer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The use of both total charge moment change (CMC) and impulse charge moment change (iCMC) magnitudes to assess the potential of a cloud-to-ground (CG) lightning stroke to induce a mesospheric sprite has been well described in the literature, particularly on a case study basis. In this climatological study, large iCMC discharges for thresholds of >100 and >300 C km in both positive and negative polarities are analyzed on a seasonal basis. Also presented are local solar time diurnal distributions in eight different regions covering the lower 48 states as well as the adjacent Atlantic Ocean, including the Gulf Stream.

The seasonal maps show the predisposition of large positive iCMCs to dominate across the northern Great Plains, with large negative iCMCs favored in the southeastern United States year-round. During summer, the highest frequency of large positive iCMCs across the upper Midwest aligns closely with the preferred tracks of nocturnal mesoscale convective systems (MCSs). As iCMC values increase above 300 C km, the maximum shifts eastward of the 100 C km maximum in the central plains.

Diurnal distributions in the eight regions support these conclusions, with a nocturnal peak in large iCMC discharges in the northern Great Plains and Great Lakes, an early to midafternoon peak in the Intermountain West and the southeastern United States, and a morning peak in large iCMC discharge activity over the Atlantic Ocean. Large negative iCMCs peak earlier in time than large positive iCMCs, which may be attributed to the growth of large stratiform charge reservoirs following initial convective development.

Corresponding author address: Steven A. Rutledge, Colorado State University, 123 Lake St., Fort Collins, CO 80523. E-mail: rutledge@atmos.colostate.edu

Abstract

The use of both total charge moment change (CMC) and impulse charge moment change (iCMC) magnitudes to assess the potential of a cloud-to-ground (CG) lightning stroke to induce a mesospheric sprite has been well described in the literature, particularly on a case study basis. In this climatological study, large iCMC discharges for thresholds of >100 and >300 C km in both positive and negative polarities are analyzed on a seasonal basis. Also presented are local solar time diurnal distributions in eight different regions covering the lower 48 states as well as the adjacent Atlantic Ocean, including the Gulf Stream.

The seasonal maps show the predisposition of large positive iCMCs to dominate across the northern Great Plains, with large negative iCMCs favored in the southeastern United States year-round. During summer, the highest frequency of large positive iCMCs across the upper Midwest aligns closely with the preferred tracks of nocturnal mesoscale convective systems (MCSs). As iCMC values increase above 300 C km, the maximum shifts eastward of the 100 C km maximum in the central plains.

Diurnal distributions in the eight regions support these conclusions, with a nocturnal peak in large iCMC discharges in the northern Great Plains and Great Lakes, an early to midafternoon peak in the Intermountain West and the southeastern United States, and a morning peak in large iCMC discharge activity over the Atlantic Ocean. Large negative iCMCs peak earlier in time than large positive iCMCs, which may be attributed to the growth of large stratiform charge reservoirs following initial convective development.

Corresponding author address: Steven A. Rutledge, Colorado State University, 123 Lake St., Fort Collins, CO 80523. E-mail: rutledge@atmos.colostate.edu
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 2197–2213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., T. L. Mote, P. G. Dixon, S. L. Trotter, E. J. Powell, J. D. Durkee, and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 3003–3017, doi:10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and K. W. Howard, 1991: Mesoscale convective complexes over the United States during 1986 and 1987. Mon. Wea. Rev., 119, 1575–1589, doi:10.1175/1520-0493(1991)119<1575:MCCOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Badan-Dangon, A., C. E. Dorman, M. A. Merrifield, and C. D. Winant, 1991: The lower atmosphere over the Gulf of California. J. Geophys. Res., 96, 16 877–16 896, doi:10.1029/91JC01433.

    • Search Google Scholar
    • Export Citation
  • Baker, F. S., 1944: Mountain climates of the western United States. Ecol. Monogr., 14, 223–254, doi:10.2307/1943534.

  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11, 2238–2257, doi:10.1175/1520-0442(1998)011<2238:EOTNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons, I. T. Baker, and R. Boldi, 1995: Sprites, ELF transients, and positive ground strokes. Science, 269, 1088–1091, doi:10.1126/science.269.5227.1088.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108–122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation. J. Atmos. Sci., 59, 2033–2056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., and U. S. Inan, 2000: Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF observations. Radio Sci., 35, 385–394, doi:10.1029/1999RS002184.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., and W. A. Lyons, 2004: Lightning charge moment changes in U.S. High Plains thunderstorms. Geophys. Res. Lett., 31, L05114, doi:10.1029/2003GL019043.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., and W. A. Lyons, 2005: Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res., 110, A04304, doi:10.1029/2004JA010812.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., W. A. Lyons, and M. A. Stanley, 2013: Three years of lightning impulse charge moment change measurements in the United States. J. Geophys. Res. Atmos., 118, 5176–5189, doi:10.1002/jgrd.50442.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electron. Comput., 51, 499–518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 9035–9044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Curran, E. B., R. L. Holle, and R. E. Lopez, 2000: Lightning casualties and damages in the United States from 1959 to 1994. J. Climate, 13, 3448–3464, doi:10.1175/1520-0442(2000)013<3448:LCADIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franz, R. C., R. J. Nemzek, and J. R. Winckler, 1990: Television image of a large upward electrical discharge above a thunderstorm system. Science, 249, 48–51, doi:10.1126/science.249.4964.48.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 1333–1345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and D. R. MacGorman, 1986: Cloud-to-ground lightning activity in mesoscale convective complexes. Mon. Wea. Rev., 114, 2320–2328, doi:10.1175/1520-0493(1986)114<2320:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403–417, doi:10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1987: The Gulf Stream rainband. Geophys. Res. Lett., 14, 1142–1145, doi:10.1029/GL014i011p01142.

  • Holle, R. L., 2013: Diurnal variations of NLDN cloud-to-ground lightning in the United States. Sixth Conf. on the Meteorological Applications of Lightning Data, Austin, TX, Amer. Meteor. Soc., 8.1. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper215133.html.]

  • Holle, R. L., K. L. Cummins, and N. W. S. Demetriades, 2011: Monthly distributions of NLDN and GLD360 cloud-to-ground lightning. Fifth Conf. on the Meteorological Applications of Lightning Data, Seattle, WA, Amer. Meteor. Soc., 306. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper184636.html.]

  • Hu, W., S. A. Cummer, W. A. Lyons, and T. E. Nelson, 2002: Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett., 29, 1279, doi:10.1029/2001GL014593.

    • Search Google Scholar
    • Export Citation
  • Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong, 1999: Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res., 104, 16 943–16 964, doi:10.1029/1999JD900139.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2008: Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res., 113, D08213, doi:10.1029/2006JD007709.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 1713–1733, doi:10.1175/JCLI4082.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., W. A. Lyons, S. A. Rutledge, J. Meyer, D. R. MacGorman, and S. A. Cummer, 2010: Transient luminous events above two mesoscale convective systems: Storm structure and evolution. J. Geophys. Res., 115, A00E22, doi:10.1029/2009JA014500.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., J. Li, W. A. Lyons, S. A. Cummer, S. A. Rutledge, and D. R. MacGorman, 2011a: Transient luminous events above two mesoscale convective systems: Charge moment change analysis. J. Geophys. Res., 116, A10306, doi:10.1029/2011JA016758.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., W. A. Lyons, S. A. Cummer, S. Rutledge, and T. E. Nelson, 2011b: Toward a climatology of precipitating systems that produce lightning with large impulse charge moment changes. Fifth Conf. on the Meteorological Applications of Lightning Data, Seattle, WA, Amer. Meteor. Soc., 4.3. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper184639.html.]

  • Lang, T. J., S. A. Cummer, S. A. Rutledge, and W. A. Lyons, 2013: The meteorology of negative cloud-to-ground lightning strokes with large charge moment changes: Implications for negative sprites. J. Geophys. Res. Atmos., 118, 7886–7896, doi:10.1002/jgrd.50595.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2008: Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett., 35, L04819, doi:10.1029/2007GL032437.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., 1966: Some effects of Lake Michigan on squall lines and summertime convection. Proc. Ninth Conf. on Great Lakes Research, Ann Arbor, MI,University of Michigan, 259–273.

  • Lyons, W. A., 1996: Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res., 101, 29 641–29 652, doi:10.1029/96JD01866.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., 2006: The meteorology of transient luminous events—An introduction and overview. NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, M. Fullekrug et al., Eds., Springer, 19–56.

  • Lyons, W. A., and S. A. Cummer, 2008: Stratospheric lightning: Forecasting and nowcasting tools. Final Rep., SBIR Phase II, Missile Defense Agency, 298 pp.

  • Lyons, W. A., M. Uliasz, and T. E. Nelson, 1998: Large peak current cloud-to-ground lightning flashes during the summer months in the contiguous United States. Mon. Wea. Rev., 126, 2217–2233, doi:10.1175/1520-0493(1998)126<2217:LPCCTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., T. E. Nelson, E. R. Williams, S. A. Cummer, and M. A. Stanley, 2003: Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems. Mon. Wea. Rev., 131, 2417–2427, doi:10.1175/1520-0493(2003)131<2417:COSPCL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., M. Stanley, J. D. Meyer, T. E. Nelson, S. A. Rutledge, T. J. Lang, and S. A. Cummer, 2009: The meteorological and electrical structure of TLE-producing convective storms. Lightning: Principles, Instruments and Applications, H. D. Betz et al., Eds., Springer Science+Business Media, 389–417, doi:10.1007/978-1-4020-9079-0_17.

  • Lyons, W. A., and Coauthors, 2012: Different strokes: Researching the unusual lightning discharges associated with sprites and jets and atypical meteorological regimes. Proc. 22nd Int. Lightning Detection Conf., Boulder, CO, Vaisala. [Available online at http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2012-archive.aspx.]

  • MacGorman, D. R., and C. D. Morgenstern, 1998: Some characteristics of cloud-to-ground lightning in mesoscale convective systems. J. Geophys. Res., 103, 14 011–14 023, doi:10.1029/97JD03221.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Makowski, J. A., D. R. MacGorman, M. I. Biggerstaff, and W. H. Beasley, 2013: Total lightning characteristics relative to radar and satellite observations of Oklahoma mesoscale convective systems. Mon. Wea. Rev., 141, 1593–1611, doi:10.1175/MWR-D-11-00268.1.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and W. R. Cotton, 1989: The precipitation life cycle of mesoscale convective complexes over the central United States. Mon. Wea. Rev., 117, 784–808, doi:10.1175/1520-0493(1989)117<0784:TPLCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S. P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206–209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and X. Yin, 2002: Mesoscale patterns of rainfall, cloudiness, and evaporation over the Great Lakes of East Africa. The East African Great Lakes: Limnology, Palaeolimnology, and Biodiversity, E. O. Odada and D. O. Olago, Eds., Advances in Global Change Research, Vol. 12, Springer, 93–119, doi:10.1007/0-306-48201-0_3.

  • Ogawa, T., Y. Tanka, T. Miura, and M. Yasuhara, 1966: Observations of natural ELF electromagnetic noises by using the ball antennas. J. Geomag. Geoelectr., 18, 443–454, doi:10.5636/jgg.18.443.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 1990: Winter lightning along the East Coast. Geophys. Res. Lett., 17, 713–715, doi:10.1029/GL017i006p00713.

  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 1179–1193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., R. W. Henderson, and L. F. Bosart, 1988: Bipole patterns revealed by lightning locations in mesoscale storm systems. Geophys. Res. Lett., 15, 129–132, doi:10.1029/GL015i002p00129.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, and K. L. Cummins, 2011: The North American Lightning Detection Network (NALDN)—Analysis of flash data: 2001–09. Mon. Wea. Rev., 139, 1305–1321, doi:10.1175/2010MWR3452.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pasko, V. P., U. S. Inan, and T. F. Bell, 2001: Mesosphere–troposphere coupling due to sprites. Geophys. Res. Lett., 28, 3821–3824, doi:10.1029/2001GL013222.

    • Search Google Scholar
    • Export Citation
  • Pawar, S. D., and A. K. Kamra, 2007: End-of-storm oscillation in tropical air mass thunderstorms. J. Geophys. Res., 112, D03204, doi:10.1029/2005JD006997.

    • Search Google Scholar
    • Export Citation
  • Price, C., W. Burrows, and P. King, 2002: The likelihood of winter sprites over the Gulf Stream. Geophys. Res. Lett., 29, 2070, doi:10.1029/2002GL015571.

    • Search Google Scholar
    • Export Citation
  • Qin, J., S. J. Celestin, and V. P. Pasko, 2012: Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites. Geophys. Res. Lett., 39, L22801, doi:10.1029/2012GL051088.

    • Search Google Scholar
    • Export Citation
  • Rakov, V. A., and M. A. Uman, 2003: Lightning. Cambridge University Press, 687 pp.

  • Romatschke, U., S. Medina, and R. A. Houze, 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419–439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 3623–3633, doi:10.1175/2010MWR3283.1.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and D. R. MacGorman, 1988: Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma–Kansas PRE-STORM project. Mon. Wea. Rev., 116, 1393–1408, doi:10.1175/1520-0493(1988)116<1393:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., C. Lu, and D. R. MacGorman, 1990: Positive cloud-to-ground lightning in mesoscale convective systems. J. Atmos. Sci., 47, 2085–2100, doi:10.1175/1520-0469(1990)047<2085:PCTGLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sao Sabbas, F. T., and Coauthors, 2010: Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 campaign in Brazil. J. Geophys. Res., 115, A00E58, doi:10.1029/2009JA014857.

    • Search Google Scholar
    • Export Citation
  • Soula, S., O. van der Velde, J. Montanyà, T. Neubert, O. Chanrion, and M. Ganot, 2009: Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies. Atmos. Res., 91, 514–528, doi:10.1016/j.atmosres.2008.06.017.

    • Search Google Scholar
    • Export Citation
  • Soula, S., and Coauthors, 2014: Multi-instrumental analysis of large sprite events and their producing storm in southern France. Atmos. Res., 135–136, 415–431, doi:10.1016/j.atmosres.2012.10.004.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 9591–9613, doi:10.1029/JD092iD08p09591.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 1381–1391, doi:10.1175/BAMS-D-12-00082.1.

    • Search Google Scholar
    • Export Citation
  • Warner, T. A., 2011: Observations of simultaneous upward lightning leaders from multiple tall structures. Atmos. Res., 117, 45–54, doi:10.1016/j.atmosres.2011.07.004.

    • Search Google Scholar
    • Export Citation
  • Warner, T. A., K. L. Cummins, and R. E. Orville, 2012a: Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004–2010. J. Geophys. Res., 117, D19109, doi:10.1029/2012JD018346.

    • Search Google Scholar
    • Export Citation
  • Warner, T. A., M. M. F. Saba, S. Ridge, M. Bunkers, W. Lyons, and R. E. Orville, 2012b: Lightning-triggered upward lightning from towers in Rapid City, South Dakota. Proc. 22nd Int. Lightning Detection Conf., Boulder, CO, Vaisala. [Available online at http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2012-archive.aspx.]

  • Williams, E. R., 1998: The positive charge reservoir for sprite-producing lightning. J. Atmos. Sol. Terr. Phys., 60, 689–692, doi:10.1016/S1364-6826(98)00030-3.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Y. Yair, 2006: The microphysical and electrical properties of sprite-producing thunderstorms. Proc. NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, Corsica, France, NATO Science Series, Vol. 225, 57–83.

  • Williams, E. R., and Coauthors, 2012: Resolution of the sprite polarity paradox: The role of halos. Radio Sci., 47, RS2002, doi:10.1029/2011RS004794.

    • Search Google Scholar
    • Export Citation
  • Wilson, C. T. R., 1924: The electric field of a thunderstorm and some of its effects. Proc. Phys. Soc. London, 37, 32D–37D, doi:10.1088/1478-7814/37/1/314.

    • Search Google Scholar
    • Export Citation
  • Zajac, B. A., and S. A. Rutledge, 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129, 999–1019, doi:10.1175/1520-0493(2001)129<0999:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1809 1608 117
PDF Downloads 167 52 0