Quantitative Differences between Lightning and Nonlightning Convective Rainfall Events as Observed with Polarimetric Radar and MSG Satellite Data

Retha Matthee Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Retha Matthee in
Current site
Google Scholar
PubMed
Close
,
John R. Mecikalski Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by John R. Mecikalski in
Current site
Google Scholar
PubMed
Close
,
Lawrence D. Carey Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
, and
Phillip M. Bitzer Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Phillip M. Bitzer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To increase understanding of the relationships between lightning and nonlightning convective storms, lightning observations from the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Analyses (NAMMA) campaign were analyzed with Meteosat Second Generation (MSG) geostationary satellite and S-band NASA Polarimetric Doppler Weather Radar (NPOL) data. The study’s goal was to analyze the time evolution of infrared satellite fields and ground-based polarimetric radar during NAMMA to quantify relationships between satellite and radar observations for lightning and nonlightning convective clouds over equatorial Africa. Using NPOL data, very low-frequency arrival time difference lightning data, and MSG Spinning Enhanced Visible and Infrared Imager observations, the physical attributes of growing cumulus clouds, including ice mass production, updraft strength, cloud depth, and cloud-top glaciation were examined. It was found that, on average, the lightning storms had stronger updrafts (seen in the satellite and radar fields), which lead to the formation of deeper clouds (seen in the satellite and radar fields) and subsequently much more ice in the mixed-phase region (as confirmed in radar observations), as well as much more nonprecipitating ice in the top 1 km of the cloud (as quantified in both satellite and radar fields) than the nonlightning storms. Computed radar-derived ice masses in cumulus clouds verifies the traditional MSG indicators of cloud-top glaciation, while NPOL verifies internal structures (i.e., large amounts of graupel) where satellite and radar show strong updrafts.

Corresponding author address: Retha Matthee, Atmospheric Science Department, University of Alabama in Huntsville, National Space Science and Technology Center, 320 Sparkman Dr., Huntsville, AL 35805-1912. E-mail: matthee@nsstc.uah.edu

Abstract

To increase understanding of the relationships between lightning and nonlightning convective storms, lightning observations from the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Analyses (NAMMA) campaign were analyzed with Meteosat Second Generation (MSG) geostationary satellite and S-band NASA Polarimetric Doppler Weather Radar (NPOL) data. The study’s goal was to analyze the time evolution of infrared satellite fields and ground-based polarimetric radar during NAMMA to quantify relationships between satellite and radar observations for lightning and nonlightning convective clouds over equatorial Africa. Using NPOL data, very low-frequency arrival time difference lightning data, and MSG Spinning Enhanced Visible and Infrared Imager observations, the physical attributes of growing cumulus clouds, including ice mass production, updraft strength, cloud depth, and cloud-top glaciation were examined. It was found that, on average, the lightning storms had stronger updrafts (seen in the satellite and radar fields), which lead to the formation of deeper clouds (seen in the satellite and radar fields) and subsequently much more ice in the mixed-phase region (as confirmed in radar observations), as well as much more nonprecipitating ice in the top 1 km of the cloud (as quantified in both satellite and radar fields) than the nonlightning storms. Computed radar-derived ice masses in cumulus clouds verifies the traditional MSG indicators of cloud-top glaciation, while NPOL verifies internal structures (i.e., large amounts of graupel) where satellite and radar show strong updrafts.

Corresponding author address: Retha Matthee, Atmospheric Science Department, University of Alabama in Huntsville, National Space Science and Technology Center, 320 Sparkman Dr., Huntsville, AL 35805-1912. E-mail: matthee@nsstc.uah.edu
Save
  • Ackerman, S. A., 1996: Global satellite observations of negative brightness temperature differences between 11 and 6.7 μm. J. Atmos. Sci., 53, 28032812, doi:10.1175/1520-0469(1996)053<2803:GSOONB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and D. D. Fenn, 1981: Satellite-observed cloud-top height changes in tornadic thunderstorms. J. Appl. Meteor., 20, 13691375, doi:10.1175/1520-0450(1981)020<1369:SOCTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Autones, F., 2012: Product user manual for “Rapid Development Thunderstorms.” RDT-PGE11 v3.0d, Météo-France, EUMETSAT Network of Satellite Application Facilities, 27 pp.

  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase. J. Geophys. Res., 105, 11 78111 792, doi:10.1029/1999JD901090.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 22312248, doi:10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar—Principles and Applications. Cambridge University Press, 636 pp.

  • Carey, L. D., 2007: Rain maps inferred from polarimetric radar observations over costal locales. Texas A&M University Project Rep., 15 pp. [Available online at ftp://ghrc.nsstc.nasa.gov/pub/doc/namma/namnpol/Rain_Maps_Inferred_from_Polarimetric_Radar_Observations_over_Coastal_Locale_Carey_2007.pdf.]

  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364, doi:10.1007/BF01032000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710, doi:10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., W. A. Peterson, and S. A. Rutledge, 2003: Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998. Mon. Wea. Rev., 131, 18111831, doi:10.1175/2566.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801, doi:10.1175/1520-0493(2002)130<0785:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Petersen, L. D. Carey, S. A. Rutledge, and M. A. F. da Silva Dias, 2002: Radar observations of the kinematic, microphysical and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res.,107, 8077, doi:10.1029/2000JD0002642002.

  • Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, doi:10.1029/2007JD009700.

    • Search Google Scholar
    • Export Citation
  • De Leonibus, L., D. Biron, C. Giorgi, A. Mäkelä, T. Tuomi, P. Pylkkö, and J. Haapalainen, 2007: Study on the present status and future capabilities of ground-based lightning location networks. Final Rep. EUM/CO/06/1584/KJG, EUMETSAT, Germany, 59 pp. [Available online at file://C:/Users/Andrea_2/Downloads/PDF_MTG_REP32.pdf.]

  • Donovan, M. F., E. R. Williams, C. Kessinger, G. Blackburn, P. H. Herzegh, R. L. Bankert, S. Miller, and F. R. Mosher, 2008: The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations. J. Appl. Meteor. Climatol., 47, 164184, doi:10.1175/2007JAMC1471.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 562 pp.

  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060, doi:10.1175/JCLI4297.1.

    • Search Google Scholar
    • Export Citation
  • Gaffard, C., and Coauthors, 2008: Observing lightning around the globe from the surface. 20th Int. Lightning Detection Conf./Second Int. Lightning Meteorology Conf., Tuscan, AZ, 12 pp. [Available online at http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/Observing_lightning_around_the_globe_from_the_surface.pdf.]

  • Harris, R. J., J. R. Mecikalski, W. M. MacKenzie Jr., P. A. Durkee, and K. E. Nielsen, 2010: The definition of GOES infrared lightning initiation interest fields. J. Appl. Meteor. Climatol., 49, 25272543, doi:10.1175/2010JAMC2575.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and A. G. Palmer, 1986: Relationships for deriving thunderstorm anvil ice mass for CCOPE storm water budget estimates. J. Climate Appl. Meteor., 25, 691702, doi:10.1175/1520-0450(1986)025<0691:RFDTAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Matrosov, and B. Baum, 2003: Ice water path–optical depth relationships for cirrus and deep stratiform ice cloud layers. J. Appl. Meteor., 42, 13691390, doi:10.1175/1520-0450(2003)042<1369:IWPDRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hondl, K. D., and M. D. Eilts, 1994: Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning. Mon. Wea. Rev., 122, 18181836, doi:10.1175/1520-0493(1994)122<1818:DRSODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keogh, S., E. Hibbett, J. Nash, and J. Eyre, 2006: The Met Office arrival time difference (ATD) system for thunderstorm detection and lightning location. Numerical Weather Prediction: Forecasting Research Tech. Rep. 488, Met Office, United Kingdom, 22 pp.

  • Kucera, P. A., 2006: Overview of NASA polarimetric Doppler weather radar (NPOL) data collected during NAMMA. Global Hydrology Resource Center (GHRC) at the Global Hydrology and Climate Center, Huntsville, AL, 11 pp. [Available online at ftp://ghrc.nsstc.nasa.gov/pub/doc/namma/namnpol/NPOL_NAMMA_Product_Documentation.pdf.]

  • Reap, R. M., 1986: Evaluation of cloud-to-ground lightning data from the western United States for the 1983–84 summer seasons. J. Climate Appl. Meteor., 25, 785799, doi:10.1175/1520-0450(1986)025<0785:EOCTGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, W., C. Walther, and R. Oye, 1994: Doppler radar data exchange format DORADE. NCAR Tech. Note NCAR/TN-4031IA, 88 pp.

  • Lund, N. R., D. R. MacGorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, 2009: Relationship between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 41514170, doi:10.1175/2009MWR2860.1.

    • Search Google Scholar
    • Export Citation
  • Matthee, R., and J. R. Mecikalski, 2013: Geostationary infrared methods for detecting lightning-producing cumulonimbus clouds. J. Geophys. Res. Atmos., 118, 6580–6592, doi:10.1002/jgrd.50485.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. Koenig, and S. Muller, 2010a: Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields. J. Appl. Meteor. Climatol., 49, 521534, doi:10.1175/2009JAMC2344.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. Koenig, and S. Muller, 2010b: Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part II: Use of visible reflectance. J. Appl. Meteor. Climatol., 49, 25442558, doi:10.1175/2010JAMC2480.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., P. D. Watts, and M. Koenig, 2011: Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmos. Res., 102, 175190, doi:10.1016/j.atmosres.2011.06.023.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., X. Li, L. D. Carey, E. W. McCaul, and T. A. Coleman, 2013: Regional comparison of GOES cloud-top properties and radar characteristics in advance of first-flash lightning initiation. Mon. Wea. Rev., 141, 5574, doi:10.1175/MWR-D-12-00120.1.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements: Part I: Theory. J. Atmos. Sci., 47, 18781893, doi:10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oye, R. C., C. Mueller, and C. Smith, 1995: Software for radar translation, visualization, editing, and interpretation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Pessi, A. T., and S. Businger, 2009: Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833848, doi:10.1175/2008JAMC1817.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14, 35663586, doi:10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, doi:10.1029/2005GL023236.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105, 22 91922 935, doi:10.1029/2000JD900333.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584, doi:10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83,977992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8 –12-μm data. J. Appl. Meteor., 33, 212229, doi:10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev., 130, 802824, doi:10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, and V. N. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 14071421, doi:10.1175/1520-0450(1991)030<1407:IWPEAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysical retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., and L. D. Carey, 2005: The development and structure of an oceanic squall-line system during the South China Sea monsoon experiment. Mon. Wea. Rev., 133, 15441561, doi:10.1175/MWR2933.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 353 76 17
PDF Downloads 237 62 14