Equations of Atmospheric Motion in Non-Eulerian Vertical Coordinates: Vector-Invariant Form and Quasi-Hamiltonian Formulation

Thomas Dubos École Polytechnique, Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, Palaiseau, France

Search for other papers by Thomas Dubos in
Current site
Google Scholar
PubMed
Close
and
Marine Tort École Polytechnique, Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, Palaiseau, France

Search for other papers by Marine Tort in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The curl form of equations of inviscid atmospheric motion in general non-Eulerian coordinates is obtained. Narrowing down to a general vertical coordinate, a quasi-Hamiltonian form is then obtained in a Lagrangian, isentropic, mass-based or z-based vertical coordinate. In non-Lagrangian vertical coordinates, the conservation of energy by the vertical transport terms results from the invariance of energy under the vertical relabeling of fluid parcels. A complete or partial separation between the horizontal and vertical dynamics is achieved, except in the Eulerian case. The horizontal–vertical separation is especially helpful for (quasi-)hydrostatic systems characterized by vanishing vertical momentum. Indeed for such systems vertical momentum balance reduces to a simple statement: total energy is stationary with respect to adiabatic vertical displacements of fluid parcels. From this point of view the purpose of (quasi-)hydrostatic balance is to determine the vertical positions of fluid parcels, for which no evolution equation is readily available. This physically appealing formulation significantly extends previous work.

The general formalism is exemplified for the fully compressible Euler equations in a Lagrangian vertical coordinate and a Cartesian (x, z) slice geometry, and the deep-atmosphere quasi-hydrostatic equations in latitude–longitude horizontal coordinates. The latter case, in particular, illuminates how the apparent intricacy of the time-dependent metric terms and of the additional forces can be absorbed into a proper choice of prognostic variables. In both cases it is shown how the quasi-Hamiltonian form leads straightforwardly to the conservation of energy using only integration by parts.

Relationships with previous work and implications for stability analysis and the derivation of approximate sets of equations and energy-conserving numerical schemes are discussed.

Corresponding author address: Thomas Dubos, École Polytechnique, Route de Saclay, 91128 Palaiseau, France. E-mail: dubos@lmd.polytechnique.fr

Abstract

The curl form of equations of inviscid atmospheric motion in general non-Eulerian coordinates is obtained. Narrowing down to a general vertical coordinate, a quasi-Hamiltonian form is then obtained in a Lagrangian, isentropic, mass-based or z-based vertical coordinate. In non-Lagrangian vertical coordinates, the conservation of energy by the vertical transport terms results from the invariance of energy under the vertical relabeling of fluid parcels. A complete or partial separation between the horizontal and vertical dynamics is achieved, except in the Eulerian case. The horizontal–vertical separation is especially helpful for (quasi-)hydrostatic systems characterized by vanishing vertical momentum. Indeed for such systems vertical momentum balance reduces to a simple statement: total energy is stationary with respect to adiabatic vertical displacements of fluid parcels. From this point of view the purpose of (quasi-)hydrostatic balance is to determine the vertical positions of fluid parcels, for which no evolution equation is readily available. This physically appealing formulation significantly extends previous work.

The general formalism is exemplified for the fully compressible Euler equations in a Lagrangian vertical coordinate and a Cartesian (x, z) slice geometry, and the deep-atmosphere quasi-hydrostatic equations in latitude–longitude horizontal coordinates. The latter case, in particular, illuminates how the apparent intricacy of the time-dependent metric terms and of the additional forces can be absorbed into a proper choice of prognostic variables. In both cases it is shown how the quasi-Hamiltonian form leads straightforwardly to the conservation of energy using only integration by parts.

Relationships with previous work and implications for stability analysis and the derivation of approximate sets of equations and energy-conserving numerical schemes are discussed.

Corresponding author address: Thomas Dubos, École Polytechnique, Route de Saclay, 91128 Palaiseau, France. E-mail: dubos@lmd.polytechnique.fr
Save
  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119143, doi:10.1016/0021-9991(66)90015-5.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 1836, doi:10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arnold, V. I., 1965: Conditions for non-linear stability of plane steady curvilinear flows of an ideal fluid. Dokl. Akad. Nauk SSSR, 162, 773–777.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., S. Benjamin, J. Lee, and A. E. MacDonald, 2010: On the use of an adaptive, hybrid-isentropic vertical coordinate in global atmospheric modeling. Mon. Wea. Rev., 138, 21882210, doi:10.1175/2009MWR3103.1.

    • Search Google Scholar
    • Export Citation
  • Gassmann, A., 2013: A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency. Quart. J. Roy. Meteor. Soc., 139, 152175, doi:10.1002/qj.1960.

    • Search Google Scholar
    • Export Citation
  • Holm, D. D., and B. Long, 1989: Lyapunov stability of ideal stratified fluid equilibria in hydrostatic balance. Nonlinearity, 2, 2335, doi:10.1088/0951-7715/2/1/002.

    • Search Google Scholar
    • Export Citation
  • Holm, D. D., J. E. Marsden, T. Ratiu, and A. Weinstein, 1985: Nonlinear stability of fluid and plasma equilibria. Phys. Rep., 123, 1116, doi:10.1016/0370-1573(85)90028-6.

    • Search Google Scholar
    • Export Citation
  • Holm, D. D., J. E. Marsden, and T. S. Ratiu, 2002: The Euler–Poincaré equations. geophysical fluid dynamics. Large-Scale Atmosphere–Ocean Dynamics II: Geometric Methods and Models, J. Norbury and I. Roulstone, Eds., Cambridge University Press, 251–299.

  • Holm, D. D., T. Schmah, and C. Stoica, 2009: Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions. Oxford Texts in Applied and Engineering Mathematics, Oxford University Press, 460 pp.

  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102, 509522, doi:10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev., 120, 197207, doi:10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, P. J., 1998: Hamiltonian description of the ideal fluid. Rev. Mod. Phys., 70, 467521, doi:10.1103/RevModPhys.70.467.

  • Padhye, N., and P. J. Morrison, 1996: Fluid element relabeling symmetry. Phys. Lett. A, 219, 287292, doi:10.1016/0375-9601(96)00472-0.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1922: Weather Prediction by Numerical Process.Cambridge University Press, 236 pp.

  • Ringler, T. D., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, doi:10.1016/j.jcp.2009.12.007.

    • Search Google Scholar
    • Export Citation
  • Roulstone, I., and S. J. Brice, 1995: On the Hamiltonian formulation of the quasi-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 121, 927936, doi:10.1002/qj.49712152410.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32, 680689, doi:10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., A. Arakawa, and Y. Mintz, 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere1. Mon. Wea. Rev., 96, 351356, doi:10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1983: Practical use of Hamilton’s principle. J. Fluid Mech., 132, 431444, doi:10.1017/S0022112083001706.

  • Salmon, R., 2004: Poisson-Bracket approach to the construction of energy- and potential-enstrophy-conserving algorithms for the shallow-water equations. J. Atmos. Sci., 61, 20162036, doi:10.1175/1520-0469(2004)061<2016:PATTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and N. Wood, 2003: The deep-atmosphere Euler equations in a generalized vertical coordinate. Mon. Wea. Rev., 131, 19311938, doi:10.1175//2564.1.

    • Search Google Scholar
    • Export Citation
  • Starr, V. P., 1945: A quasi-Lagrangian system of hydrodynamical equations. J. Meteor., 2, 227237, doi:10.1175/1520-0469(1945)002<0227:AQLSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tort, M., and T. Dubos, 2014a: Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2274, in press.

  • Tort, M., and T. Dubos, 2014b: Usual approximations to the equations of atmospheric motion: A variational perspective. J. Atmos. Sci.,71, 2452–2466, doi:10.1175/JAS-D-13-0339.1.

  • White, A. A., and R. A. Bromley, 1995: Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quart. J. Roy. Meteor. Soc., 121, 399418, doi:10.1002/qj.49712152208.

    • Search Google Scholar
    • Export Citation
  • White, A. A., and N. Wood, 2012: Consistent approximate models of the global atmosphere in non-spherical geopotential coordinates. Quart. J. Roy. Meteor. Soc., 138, 980988, doi:10.1002/qj.972.

    • Search Google Scholar
    • Export Citation
  • White, A. A., B. J. Hoskins, I. Roulstone, and A. Staniforth, 2005: Consistent approximate models of the global atmosphere: Shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quart. J. Roy. Meteor. Soc., 131, 20812107, doi:10.1256/qj.04.49.

    • Search Google Scholar
    • Export Citation
  • Wood, N., and A. Staniforth, 2003: The deep-atmosphere Euler equations with a mass-based vertical coordinate. Quart. J. Roy. Meteor. Soc., 129, 12891300, doi:10.1256/qj.02.153.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 478 144 29
PDF Downloads 336 58 7