A Comparison of Two Techniques for Generating Nowcasting Ensembles. Part I: Lagrangian Ensemble Technique

Aitor Atencia J. S. Marshall Radar Observatory, Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Aitor Atencia in
Current site
Google Scholar
PubMed
Close
and
Isztar Zawadzki J. S. Marshall Radar Observatory, Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Isztar Zawadzki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lagrangian extrapolation of recent radar observations is a widely used deterministic nowcasting technique in operational and research centers. However, this technique does not account for errors due to changes in precipitation motion and to growth and decay, thus limiting forecasting skill. In this work these uncertainties have been introduced in the Lagrangian forecasts to generate different realistic future realizations (ensembles). The developed technique benefits from the well-known predictable large scales (low pass) and introduces stochastic noise in the small scales (high pass). The existence of observed predictable properties in the small scales is introduced in the generation of the stochastic noise. These properties provide realistic ensembles of different meteorological situations, narrowing the spread among members. Finally, some statistical spatial and temporal properties of the final set of ensembles have been verified to determine if the technique developed introduced enough uncertainty while keeping the properties of the original field.

Corresponding author address: Aitor Atencia, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. W., Montreal QC H3A 2K6, Canada. E-mail: aitor.atenciaruizdegopegui@mail.mcgill.ca

Abstract

Lagrangian extrapolation of recent radar observations is a widely used deterministic nowcasting technique in operational and research centers. However, this technique does not account for errors due to changes in precipitation motion and to growth and decay, thus limiting forecasting skill. In this work these uncertainties have been introduced in the Lagrangian forecasts to generate different realistic future realizations (ensembles). The developed technique benefits from the well-known predictable large scales (low pass) and introduces stochastic noise in the small scales (high pass). The existence of observed predictable properties in the small scales is introduced in the generation of the stochastic noise. These properties provide realistic ensembles of different meteorological situations, narrowing the spread among members. Finally, some statistical spatial and temporal properties of the final set of ensembles have been verified to determine if the technique developed introduced enough uncertainty while keeping the properties of the original field.

Corresponding author address: Aitor Atencia, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. W., Montreal QC H3A 2K6, Canada. E-mail: aitor.atenciaruizdegopegui@mail.mcgill.ca
Save
  • Andersson, T., and K. Ivarsson, 1991: A model for probability nowcasts of accumulated precipitation using radar. J. Appl. Meteor., 30, 135–141, doi:10.1175/1520-0450(1991)030<0135:AMFPNO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atencia, A., 2010: Integration of meteorological, hydrological and radar-based models for real-time flood forecasting. Ph.D. thesis, University of Barcelona, Barcelona, Spain, 296 pp.

  • Atencia, A., M. Llasat, L. Garrote de Marcos, and L. Mediero Orduña, 2010: Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model. Hydrol. Earth Syst. Sci., 7, 7995–8043, doi:10.5194/hessd-7-7995-2010.

    • Search Google Scholar
    • Export Citation
  • Bartholmes, J., and E. Todini, 2005: Coupling meteorological and hydrological models for flood forecasting. Hydrol. Earth Syst. Sci., 9, 333–346, doi:10.5194/hess-9-333-2005.

    • Search Google Scholar
    • Export Citation
  • Berenguer, M., D. Sempere-Torres, and G. Pegram, 2011: SBMcast—An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J. Hydrol., 404, 226–240, doi:10.1016/j.jhydrol.2011.04.033.

    • Search Google Scholar
    • Export Citation
  • Berenguer, M., M. Surcel, I. Zawadzki, M. Xue, and F. Kong, 2012: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part II: Intercomparison among numerical models and with nowcasting. Mon. Wea. Rev., 140, 2689–2705, doi:10.1175/MWR-D-11-00181.1.

    • Search Google Scholar
    • Export Citation
  • Bochner, S., and K. Chandrasekharan, 1949: Fourier Transforms. Princeton University Press, 219 pp.

  • Bowler, N., C. Pierce, and A. Seed, 2006: STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Quart. J. Roy. Meteor. Soc., 132, 2127–2155, doi:10.1256/qj.04.100.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 2859–2873, doi:10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2004: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteor., 43, 74–89, doi:10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Germann, U., I. Zawadzki, and B. Turner, 2006: Predictability of precipitation from continental radar images. Part IV: Limits to prediction. J. Atmos. Sci., 63, 2092–2108, doi:10.1175/JAS3735.1.

    • Search Google Scholar
    • Export Citation
  • Germann, U., M. Berenguer, D. Sempere-Torres, and M. Zappa, 2009: Real ensemble radar precipitation estimation for hydrology in a mountainous region. Quart. J. Roy. Meteor. Soc., 135, 445–456, doi:10.1002/qj.375.

    • Search Google Scholar
    • Export Citation
  • Golding, B., 1998: Nimrod: A system for generating automated very short range forecasts. Meteor. Appl., 5, 1–16, doi:10.1017/S1350482798000577.

    • Search Google Scholar
    • Export Citation
  • Greene, D., and A. Flanders, 1976: Radar hydrology—The state of the art. Preprints, Conf. on Hydro-Meteorology, Fort Worth, TX, Amer. Meteor. Soc, 66–71.

  • Harrison, D. L., K. Norman, C. Pierce, and N. Gaussiat, 2012: Radar products for hydrological applications in the UK. Proc. ICE Water Manage.,165, 89–103, doi:10.1680/wama.2012.165.2.89.

  • Krajewski, W., V. Lakshmi, K. Georgakakos, and S. Jain, 1991: A Monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resour. Res., 27, 119–128, doi:10.1029/90WR01977.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Schmid, and J. Joss, 1995: Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 34, 1286–1300, doi:10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, C., S. Vasic, A. Kilambi, B. Turner, and I. Zawadzki, 2005: Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys. Res. Lett.,32, L14801, doi:10.1029/2005GL023451.

  • Lovejoy, S., and D. Schertzer, 1990: Multifractals, universality classes and satellite and radar. J. Geophys. Res., 95, 2021–2034, doi:10.1029/JD095iD03p02021.

    • Search Google Scholar
    • Export Citation
  • Mackay, N., R. Chandler, C. Onof, and H. Wheater, 2001: Disaggregation of spatial rainfall fields for hydrological modelling. Hydrol. Earth Syst. Sci., 5, 165–173, doi:10.5194/hess-5-165-2001.

    • Search Google Scholar
    • Export Citation
  • Mariella, L., and M. Tarantino, 2010: Spatial temporal conditional auto-regressive model: A new autoregressive matrix. Austrian J. Stat., 39, 223–244.

    • Search Google Scholar
    • Export Citation
  • Mecklenburg, S., A. Jurczyk, J. Szturc, and K. Osrodka, 2002: Quantitative precipitation forecasts (QPF) based on radar data for hydrological models. COST Action 717, 33 pp. [Available online at http://www.smhi.se/cost717/doc/WDF_01_200203_2.pdf.]

  • Oliver, D., 1995: Moving averages for Gaussian simulation in two and three dimensions. Math. Geol., 27, 939–960, doi:10.1007/BF02091660.

    • Search Google Scholar
    • Export Citation
  • Pegram, G., and A. Clothier, 2001: High resolution space–time modelling of rainfall: The string of beads model. J. Hydrol., 241, 26–41, doi:10.1016/S0022-1694(00)00373-5.

    • Search Google Scholar
    • Export Citation
  • Perica, S., and E. Foufoula-Georgiou, 1996: Linkage of scaling and thermodynamic parameters of rainfall: Results from midlatitude mesoscale convective systems. J. Geophys. Res., 101, 7431–7448, doi:10.1029/95JD02372.

    • Search Google Scholar
    • Export Citation
  • Priestley, M. B., 1981: Spectral Analysis and Time Series. Vol. 1. Academic Press, 890 pp.

  • Radhakrishna, B., I. Zawadzki, and F. Fabry, 2012: Predictability of precipitation from continental radar images. Part V: Growth and decay. J. Atmos. Sci., 69, 3336–3349, doi:10.1175/JAS-D-12-029.1.

    • Search Google Scholar
    • Export Citation
  • Ravalec, M., B. Noetinger, and L. Hu, 2000: The FFT moving average (FFT-MA) generator: An efficient numerical method for generating and conditioning Gaussian simulations. Math. Geol., 32, 701–723, doi:10.1023/A:1007542406333.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R., and E. Garvey, 1978: Three-dimensional storm motion detection by conventional weather radar. Nature, 273, 287–289, doi:10.1038/273287a0.

    • Search Google Scholar
    • Export Citation
  • Schmid, W., S. Mecklenburg, and J. Joss, 2000: Short-term risk forecasts of severe weather. Phys. Chem. Earth, Part B: Hydrol. Oceans Atmos., 25, 1335–1338, doi:10.1016/S1464-1909(00)00204-5.

    • Search Google Scholar
    • Export Citation
  • Seed, A., 2003: A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteor., 42, 381–388, doi:10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119, 2206–2223, doi:10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Surcel, M., I. Zawadzki, and M. K. Yau, 2014: A study on the scale dependence of the predictability of precipitation patterns. J. Atmos. Sci., submitted.

  • Tsonis, A., and G. Austin, 1981: An evaluation of extrapolation techniques for the short-term prediction of rain amounts. Atmos.–Ocean, 19, 54–65, doi:10.1080/07055900.1981.9649100.

    • Search Google Scholar
    • Export Citation
  • Venugopal, V., E. Foufoula-Georgiou, and V. Sapozhnikov, 1999: Evidence of dynamic scaling in space-time rainfall. J. Geophys. Res., 104, 31 599–31 610, doi:10.1029/1999JD900437.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126, 3292–3302, doi:10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J., N. Crook, C. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 2079–2099, doi:10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J., Y. Feng, M. Chen, and R. Roberts, 2010: Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Wea. Forecasting, 25, 1691–1714, doi:10.1175/2010WAF2222417.1.

    • Search Google Scholar
    • Export Citation
  • Yang, D., S. Herath, and K. Musiake, 2000: Comparison of different distributed hydrological models for characterization of catchment spatial variability. Hydrol. Processes, 14, 403–416, doi:10.1002/(SICI)1099-1085(20000228)14:3<403::AID-HYP945>3.0.CO;2-3.

    • Search Google Scholar
    • Export Citation
  • Zappa, M., and Coauthors, 2010: Propagation of uncertainty from observing systems and NWP into hydrological models: Cost-731 Working Group 2. Atmos. Sci. Lett., 11, 83–91, doi:10.1002/asl.248.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 389 123 5
PDF Downloads 293 87 8