Improving the Model Convective Storm Quantitative Precipitation Nowcasting by Assimilating State Variables Retrieved from Multiple-Doppler Radar Observations

Yu-Chieng Liou Department of Atmospheric Sciences, National Central University, Jhongli City, Taiwan

Search for other papers by Yu-Chieng Liou in
Current site
Google Scholar
PubMed
Close
,
Jian-Luen Chiou Department of Atmospheric Sciences, National Central University, Jhongli City, Taiwan

Search for other papers by Jian-Luen Chiou in
Current site
Google Scholar
PubMed
Close
,
Wei-Hao Chen Department of Atmospheric Sciences, National Central University, Jhongli City, Taiwan

Search for other papers by Wei-Hao Chen in
Current site
Google Scholar
PubMed
Close
, and
Hsin-Yu Yu Department of Atmospheric Sciences, National Central University, Jhongli City, Taiwan

Search for other papers by Hsin-Yu Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This research combines an advanced multiple-Doppler radar synthesis technique with the thermodynamic retrieval method, originally proposed by Gal-Chen, and a moisture/temperature adjustment scheme, and formulates a sequential procedure. The focus is on applying this procedure to improve the model quantitative precipitation nowcasting (QPN) skill in the convective scale up to 3 hours. A series of (observing system simulation experiment) OSSE-type tests and a real case study are conducted to investigate the performance of this algorithm under different conditions.

It is shown that by using the retrieved three-dimensional wind, thermodynamic, and microphysical parameters to reinitialize a fine-resolution numerical model, its QPN skill can be significantly improved. Since the Gal-Chen method requires the horizontal average properties of the weather system at each altitude, utilization of in situ radiosonde(s) to obtain this additional information for the retrieval is tested. When sounding data are not available, it is demonstrated that using the model results to replace the role played by observing devices is also a feasible choice. The moisture field is obtained through a simple, but effective, adjusting scheme and is found to be beneficial to the rainfall forecast within the first hour after the reinitialization of the model.

Since this algorithm retrieves the unobserved state variables instantaneously from the wind measurements and directly uses them to reinitialize the model, fewer radar data and a shorter model spinup time are needed to correct the rainfall forecasts, in comparison with other data assimilation techniques such as four-dimensional variational data assimilation (4DVAR) or ensemble Kalman filter (EnKF) methods.

Corresponding author address: Dr. Yu-Chieng Liou, Department of Atmospheric Sciences, National Central University, No. 300 Jhongda Rd., Jhongli City, 320 Taiwan. E-mail: tyliou@atm.ncu.edu.tw

Abstract

This research combines an advanced multiple-Doppler radar synthesis technique with the thermodynamic retrieval method, originally proposed by Gal-Chen, and a moisture/temperature adjustment scheme, and formulates a sequential procedure. The focus is on applying this procedure to improve the model quantitative precipitation nowcasting (QPN) skill in the convective scale up to 3 hours. A series of (observing system simulation experiment) OSSE-type tests and a real case study are conducted to investigate the performance of this algorithm under different conditions.

It is shown that by using the retrieved three-dimensional wind, thermodynamic, and microphysical parameters to reinitialize a fine-resolution numerical model, its QPN skill can be significantly improved. Since the Gal-Chen method requires the horizontal average properties of the weather system at each altitude, utilization of in situ radiosonde(s) to obtain this additional information for the retrieval is tested. When sounding data are not available, it is demonstrated that using the model results to replace the role played by observing devices is also a feasible choice. The moisture field is obtained through a simple, but effective, adjusting scheme and is found to be beneficial to the rainfall forecast within the first hour after the reinitialization of the model.

Since this algorithm retrieves the unobserved state variables instantaneously from the wind measurements and directly uses them to reinitialize the model, fewer radar data and a shorter model spinup time are needed to correct the rainfall forecasts, in comparison with other data assimilation techniques such as four-dimensional variational data assimilation (4DVAR) or ensemble Kalman filter (EnKF) methods.

Corresponding author address: Dr. Yu-Chieng Liou, Department of Atmospheric Sciences, National Central University, No. 300 Jhongda Rd., Jhongli City, 320 Taiwan. E-mail: tyliou@atm.ncu.edu.tw
Save
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570–573, doi:10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bousquet, O., P. Tabary, and J. Parent du Chatelet, 2007: On the use operational synthesized multiple-Doppler wind fields. Geophys. Res. Lett., 34, L22813, doi:10.1029/2007GL030464.

    • Search Google Scholar
    • Export Citation
  • Bousquet, O., T. Montmerle, and P. Tabary, 2008a: Using operationally synthesized multiple-Doppler winds for high resolution horizontal wind forecast verification. Geophys. Res. Lett., 35, L10803, doi:10.1029/2008GL033975.

    • Search Google Scholar
    • Export Citation
  • Bousquet, O., P. Tabary, and J. Parent du Chatelet, 2008b: Operational multiple-Doppler wind retrieval inferred from long-range radial velocity measurements. J. Appl. Meteor. Climatol., 47, 2929–2945, doi:10.1175/2008JAMC1878.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E., 1977: Flow in severe thunderstorms observed by dual-Doppler radar. Mon. Wea. Rev., 105, 113–120, doi:10.1175/1520-0493(1977)105<0113:FISTOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J., M. Halem, and R. Jastrow, 1969: Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci., 26, 1160–1163, doi:10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and S. Cosma, 2000: A formulation of the continuity equation of MUSCAT for either flat or complex terrain. J. Atmos. Oceanic Technol., 17, 1556–1564, doi:10.1175/1520-0426(2000)017<1556:AFOTCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and Coauthors, 2000: Real-time wind synthesis from Doppler radar observations during the Mesoscale Alpine Programme. Bull. Amer. Meteor. Soc., 81, 2953–2962, doi:10.1175/1520-0477(2000)081<2953:RTWSFD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, A., 1994: Numerical simulations initialized with radar-derived winds. Part I: Simulated data experiments. Mon. Wea. Rev., 122, 1189–1203, doi:10.1175/1520-0493(1994)122<1189:NSIWRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 1767–1785, doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, A., and J. D. Tuttle, 1994: Numerical simulations initialized with radar-derived winds. Part II: Forecasts of three gust-front cases. Mon. Wea. Rev., 122, 1204–1217, doi:10.1175/1520-0493(1994)122<1204:NSIWRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., P. S. Ray, R. G. Strauch, and L. Jay Miller, 1976: Error estimation in wind fields derived from dual-Doppler radar measurement. J. Appl. Meteor., 15, 868–878, doi:10.1175/1520-0450(1976)015<0868:EEIWFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982–2005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equation: Implications for matching models with observations. Mon. Wea. Rev., 106, 587–606, doi:10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 1054–1065, doi:10.1175/JAS-D-11-0162.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142, doi:10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457–469, doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ge, G., J. Gao, and M. Xue, 2012: Diagnostic pressure equation as a weak constraint in a storm-scale three-dimensional variational radar data assimilation system. J. Atmos. Oceanic Technol., 29, 1075–1092, doi:10.1175/JTECH-D-11-00201.1.

    • Search Google Scholar
    • Export Citation
  • Georgis, J. F., F. Roux, and P. H. Hildebrand, 2000: Observation of precipitation systems over complex orography with meteorological Doppler radars: A feasibility study. Meteor. Atmos. Phys., 72, 185–202, doi:10.1007/s007030050015.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698, doi:10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., P. S. Ray, and K. W. Johnson, 1993: Initialization of a modeled convective storm using Doppler radar-derived fields. Mon. Wea. Rev., 121, 2757–2775, doi:10.1175/1520-0493(1993)121<2757:IOAMCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., 2001: The derivation of absolute potential temperature perturbations and pressure gradients from wind measurements in three-dimensional space. J. Atmos. Oceanic Technol., 18, 577–590, doi:10.1175/1520-0426(2001)018<0577:TDOAPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., and I.-S. Luo, 2001: An investigation of the moving frame single-Doppler wind retrieval technique using Taiwan Area Mesoscale Experiment low-level data. J. Appl. Meteor., 40, 1900–1917, doi:10.1175/1520-0450(2001)040<1900:AIOTMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., and Y.-J. Chang, 2009: A variational multiple-Doppler radar three-dimensional wind synthesis method and its impact on thermodynamic retrieval. Mon. Wea. Rev., 137, 3992–4010, doi:10.1175/2009MWR2980.1.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., T.-C. Chen Wang, and K.-S. Chung, 2003: A three-dimensional variational approach for deriving the thermodynamic structure using Doppler wind observations—An application to a subtropical squall line. J. Appl. Meteor., 42, 1443–1454, doi:10.1175/1520-0450(2003)042<1443:ATVAFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., S.-F. Chang, and J. Sun, 2012: An application of the immersed boundary method for recovering the three-dimensional wind fields over complex terrain using multiple-Doppler radar data. Mon. Wea. Rev., 140, 1603–1619, doi:10.1175/MWR-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432–449, doi:10.1175/1520-0426(1999)016<0432:AVMFRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 2000: Optimization of dynamic retrievals from a multiple-Doppler radar network. J. Atmos. Oceanic Technol., 17, 753–760, doi:10.1175/1520-0426(2000)017<0753:OODRFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, and B. Bumgarner, 1975: Dual-Doppler observation of a tornadic storm. J. Appl. Meteor., 14, 1521–1530, doi:10.1175/1520-0450(1975)014<1521:DDOOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., K. K. Wagner, K. W. Johnson, J. J. Stephens, W. C. Bumgarner, and E. A. Mueller, 1978: Triple-Doppler observations of a convective storm. J. Appl. Meteor., 17, 1201–1212, doi:10.1175/1520-0450(1978)017<1201:TDOOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 293 pp.

  • Rotunno, R., and J. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev., 113, 2142–2157, doi:10.1175/1520-0493(1985)113<2142:ROTFFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roux, F., 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406–426, doi:10.1175/1520-0469(1988)045<0406:TWASLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scialom, G., and Y. Lemaitre, 1990: A new analysis for the retrieval of three-dimensional mesoscale wind fields from multiple Doppler radar. J. Atmos. Oceanic Technol., 7, 640–665, doi:10.1175/1520-0426(1990)007<0640:ANAFTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and J. J. Mewes, 1999: New formulations of dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 16, 782–792, doi:10.1175/1520-0426(1999)016<0782:NFODDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 1265–1287, doi:10.1175/1520-0469(1995)052<1265:SDVRWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677, doi:10.1175/2555.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamic and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiment. J. Atmos. Sci., 54, 1642–1661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364–2388, doi:10.1175/2007MWR2205.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of three-dimensional wind and temperature fields from simulated Doppler radar data. J. Atmos. Sci., 48, 876–890, doi:10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M. C. Kuo, 2011: Precipitation forecast using Doppler radar data, a cloud model with adjoint, and the Weather Research and Forecasting model—Real case studies during SoWMEX in Taiwan. Wea. Forecasting, 26, 975–992, doi:10.1175/WAF-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807, doi:10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y., and J. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593–623, doi:10.1016/j.jcp.2003.07.024.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 1452–1472, doi:10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130, 454–476, doi:10.1175/1520-0493(2002)130<0454:ROMIFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788, doi:10.1175/JAM2248.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., C.-J. Qiu, H.-D. Gu, and J.-X. Yu, 1995: Simple adjoint retrievals of microburst winds from single-Doppler radar data. Mon. Wea. Rev., 123, 1822–1833, doi:10.1175/1520-0493(1995)123<1822:SAROMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., H. Gu, and W. Gu, 2001: A variational method for Doppler radar data assimilation. Preprints, Fifth Symp. on Integrated Observing Systems, Albuquerque, NM, Amer. Meteor. Soc., 118–121.

  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square-root Kalman filter for evaluating impact of data from radar networks on thunderstorm analysis and forecast. J. Atmos. Oceanic Technol., 23, 46–66, doi:10.1175/JTECH1835.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., J. Crook, Q. Xu, and P. R. Harasti, 2006: Using radar wind observations to improve mesoscale numerical weather prediction. Wea. Forecasting, 21, 502–522, doi:10.1175/WAF936.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 262 107 7
PDF Downloads 145 42 7