Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature Perturbations

Natalie Perlin Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Natalie Perlin in
Current site
Google Scholar
PubMed
Close
,
Simon P. de Szoeke College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Simon P. de Szoeke in
Current site
Google Scholar
PubMed
Close
,
Dudley B. Chelton College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Dudley B. Chelton in
Current site
Google Scholar
PubMed
Close
,
Roger M. Samelson College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Roger M. Samelson in
Current site
Google Scholar
PubMed
Close
,
Eric D. Skyllingstad College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Eric D. Skyllingstad in
Current site
Google Scholar
PubMed
Close
, and
Larry W. O’Neill College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Larry W. O’Neill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of sU = 0.42 m s−1 °C−1 for wind to mesoscale SST perturbations. The eight model configurations produce coupling coefficients varying from 0.31 to 0.56 m s−1 °C−1. Most closely matching QuikSCAT are a WRF simulation with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (sU = 0.40 m s−1 °C−1), and a COAMPS simulation with a form of Mellor–Yamada parameterization (sU = 0.38 m s−1 °C−1). Model rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind stress, are similar to that based on sU. In all simulations, the atmospheric potential temperature response to local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast, the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m. The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.

Corresponding author address: Natalie Perlin, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: nperlin@rsmas.miami.edu

Abstract

The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of sU = 0.42 m s−1 °C−1 for wind to mesoscale SST perturbations. The eight model configurations produce coupling coefficients varying from 0.31 to 0.56 m s−1 °C−1. Most closely matching QuikSCAT are a WRF simulation with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (sU = 0.40 m s−1 °C−1), and a COAMPS simulation with a form of Mellor–Yamada parameterization (sU = 0.38 m s−1 °C−1). Model rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind stress, are similar to that based on sU. In all simulations, the atmospheric potential temperature response to local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast, the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m. The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.

Corresponding author address: Natalie Perlin, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: nperlin@rsmas.miami.edu
Save
  • Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, doi:10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881, doi:10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Chelton, D. B., and M. G. Schlax, 2003: The accuracies of smoothed sea surface height fields constructed from tandem altimeter datasets. J. Atmos. Oceanic Technol., 20, 12761302, doi:10.1175/1520-0426(2003)020<1276:TAOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and F. J. Wentz, 2005: Global high-resolution satellite observations of sea-surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteor. Soc., 86, 10971115, doi:10.1175/BAMS-86-8-1097.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. Schlax, M. Freilich, and R. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495517, doi:10.1175/JPO3025.1.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., and S. J. Devlin, 1988: Locally-weighted regression: An approach to regression analysis by local fitting. J. Amer. Stat. Assoc., 83, 596610, doi:10.1080/01621459.1988.10478639.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from TOPEX/POSEIDON and ERS-1/2. J. Geophys. Res., 105, 19 47719 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715721, doi:10.1002/qj.49709641012.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for TOGA COARE. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, doi:10.1029/RG023i004p00357.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 5562, doi:10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129, 357377, doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haack, T., D. Chelton, J. Pullen, J. D. Doyle, and M. Schlax, 2008: Summertime influence of SST on surface wind stress off the U.S. West Coast from the U.S. Navy COAMPS model. J. Phys. Oceanogr., 38, 24142437, doi:10.1175/2008JPO3870.1.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Liu, W. T., and W. Tang, 1996: Equivalent neutral wind. JPL Publ. 96-17, NASA Jet Propulsion Laboratory, 20 pp.

  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. B. Chelton, 2006: An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models. J. Climate, 19, 27432762, doi:10.1175/JCLI3728.1.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206210, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst.,24, 163–187.

  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., 2012: Wind speed and stability effects on the coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25, 15441569, doi:10.1175/JCLI-D-11-00121.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations on the wind stress field over the Southern Ocean on seasonal time scales. J. Climate, 16, 23402354, doi:10.1175/2780.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723, doi:10.1175/JCLI3415.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2010a: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255281, doi:10.1175/2009JCLI2613.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., S. K. Esbensen, N. Thum, R. M. Samelson, and D. B. Chelton, 2010b: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559581, doi:10.1175/2009JCLI2662.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942, doi:10.1175/JCLI-D-11-00230.1.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perlin, N., R. M. Samelson, and D. B. Chelton, 2004: Scatterometer and model wind and wind stress in the Oregon–California coastal zone. Mon. Wea. Rev., 132, 21102129, doi:10.1175/1520-0493(2004)132<2110:SAMWAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and F. J. Wentz, 2011: Reprocessed QuikSCAT (V04) wind vectors with Ku-2011 geophysical model function. Remote Sensing Systems Rep. 043011, Santa Rosa, CA, 8 pp.

  • Rio, M.-H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, doi:10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., P. Schaeffer, F. Hernandez, and J.-M. Lemoine, 2005: The estimation of the ocean Mean Dynamic Topography through the combination of altimetric data, in-situ measurements and GRACE geoid: From global to regional studies. Proc. GOCINA Int. Workshop, Kirchberg, Luxembourg, European Space Agency.

  • Ross, D. B., V. J. Cardone, J. Overland, R. D. McPherson, W. J. Pierson Jr., and T. Yu, 1985: Oceanic surface winds. Advances in Geophysics, Vol. 27, Academic Press, 101138.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., E. D. Skyllingstad, D. B. Chelton, S. K. Esbensen, L. W. O’Neill, and N. Thum, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19, 15571566, doi:10.1175/JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Schlax, M. G., and D. B. Chelton, 1992: Frequency domain diagnostics for linear smoothers. J. Amer. Stat. Assoc., 87, 10701081, doi:10.1080/01621459.1992.10476262.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf.]

  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Song, Q., D. B. Chelton, S. K. Esbensen, N. Thum, and L. W. O’Neill, 2009: Coupling between sea surface temperature and low-level winds in mesoscale numerical models. J. Climate, 22, 146164, doi:10.1175/2008JCLI2488.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, xiii + 666 pp.

  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Uno, I., X.-M. Cai, D. G. Steyn, and S. Emori, 1995: A simple extension of the Louis method for rough surface layer modelling. Bound.-Layer Meteor., 76, 395409, doi:10.1007/BF00709241.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., J. Uotila, and J. Launiainen, 1998: Air–sea interaction over a thermal marine front in the Denmark Strait. J. Geophys. Res., 103, 27 66527 678, doi:10.1029/98JC02415.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and J. D. Doyle, 2002: Some improvement to Louis surface flux parameterization. 15th Conf. on Boundary Layer and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., 13.3a. [Available online at https://ams.confex.com/ams/BLT/techprogram/paper_44519.htm.]

  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790, doi:10.1002/qj.49709640708.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, doi:10.1175/BAMS-85-2-195.

    • Search Google Scholar
    • Export Citation
  • Yamada, T., 1983: Simulations of nocturnal drainage flows by a q2 l turbulence closure model. J. Atmos. Sci., 40, 91106, doi:10.1175/1520-0469(1983)040<0091:SONDFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., and T. D. Sikora, 2003: Mesoscale stratocumulus bands caused by Gulf Stream meanders. Mon. Wea. Rev., 131, 21772191, doi:10.1175/1520-0493(2003)131<2177:MSBCBG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, doi:10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean,33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1110 477 25
PDF Downloads 488 141 6