Properties of a Simulated Convective Boundary Layer in an Idealized Supercell Thunderstorm Environment

Christopher J. Nowotarski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Christopher J. Nowotarski in
Current site
Google Scholar
PubMed
Close
,
Paul M. Markowski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul M. Markowski in
Current site
Google Scholar
PubMed
Close
,
Yvette P. Richardson Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette P. Richardson in
Current site
Google Scholar
PubMed
Close
, and
George H. Bryan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nearly all previous numerical simulations of supercell thunderstorms have neglected surface fluxes of heat, moisture, and momentum. This choice precludes horizontal inhomogeneities associated with dry boundary layer convection in the near-storm environment. As part of a broader study on how mature supercell thunderstorms are affected by a convective boundary layer (CBL) with quasi-two-dimensional features (i.e., boundary layer rolls), this paper documents the methods used to develop a realistic CBL in an idealized environment supportive of supercells. The evolution and characteristics of the modeled CBL, including the horizontal variability of thermodynamic and kinematic quantities known to affect supercell evolution, are presented. The simulated rolls result in periodic bands of perturbations in temperature, moisture, convective available potential energy (CAPE), vertical wind shear, and storm-relative helicity (SRH). Vertical vorticity is shown to arise within the boundary layer through the tilting of ambient horizontal vorticity associated with the background shear by vertical velocity perturbations in the turbulent CBL. Sensitivity tests suggest that 200-m horizontal grid spacing is adequate to represent rolls using a large-eddy simulation (LES) approach.

Current affiliation: Department of Atmospheric Sciences, Texas A&M University, College Station, Texas.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Christopher J. Nowotarski, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. E-mail: cjnowotarski@tamu.edu

Abstract

Nearly all previous numerical simulations of supercell thunderstorms have neglected surface fluxes of heat, moisture, and momentum. This choice precludes horizontal inhomogeneities associated with dry boundary layer convection in the near-storm environment. As part of a broader study on how mature supercell thunderstorms are affected by a convective boundary layer (CBL) with quasi-two-dimensional features (i.e., boundary layer rolls), this paper documents the methods used to develop a realistic CBL in an idealized environment supportive of supercells. The evolution and characteristics of the modeled CBL, including the horizontal variability of thermodynamic and kinematic quantities known to affect supercell evolution, are presented. The simulated rolls result in periodic bands of perturbations in temperature, moisture, convective available potential energy (CAPE), vertical wind shear, and storm-relative helicity (SRH). Vertical vorticity is shown to arise within the boundary layer through the tilting of ambient horizontal vorticity associated with the background shear by vertical velocity perturbations in the turbulent CBL. Sensitivity tests suggest that 200-m horizontal grid spacing is adequate to represent rolls using a large-eddy simulation (LES) approach.

Current affiliation: Department of Atmospheric Sciences, Texas A&M University, College Station, Texas.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Christopher J. Nowotarski, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. E-mail: cjnowotarski@tamu.edu
Save
  • Arakawa, A., and V. Lamb, 1977: Computational design of the basic dynamical processes in the UCLA general circulation model. General Circulation Models of the Atmosphere, J. Chang, Ed., Vol. 17, Methods in Computational Physics, Academic Press, 174–264.

  • Arnott, N. R., Y. P. Richardson, J. M. Wurman, and E. M. Rasmussen, 2006: Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP. Mon. Wea. Rev., 134, 311–335, doi:10.1175/MWR3065.1.

    • Search Google Scholar
    • Export Citation
  • Asai, T., 1970: Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Meteor. Soc. Japan, 48, 129–139.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–969, doi:10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 2910–2927, doi:10.1175/1520-0493(1999)127<2910:TIOPBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403–431, doi:10.1029/96RG02623.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., S. H. Chou, and P. J. Sheu, 1986: The structure of the unstable marine boundary layer viewed by lidar and aircraft observations. J. Atmos. Sci., 43, 1301–1318, doi:10.1175/1520-0469(1986)043<1301:TSOTUM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1972: On the inflection point instability of a stratified Ekman boundary layer. J. Atmos. Sci., 29, 850–859, doi:10.1175/1520-0469(1972)029<0850:OTIPIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space Phys., 18, 683–697, doi:10.1029/RG018i003p00683.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2002: An investigation of the convective region of numerically simulated squall lines. Ph.D. thesis, The Pennsylvania State University, 181 pp.

  • Bryan, G. H., 2009: The governing equations for CM1. National Center for Atmospheric Research, Boulder, CO, 15 pp.

  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 2917–2928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 2394–2416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. R. Mansell, and Y. P. Richardson, 2012: Simulation of dryline misovortex dynamics and cumulus formation. Mon. Wea. Rev., 140, 3525–3551, doi:10.1175/MWR-D-11-00189.1.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., Jr., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus clouds. J. Atmos. Sci., 55, 3417–3432, doi:10.1175/1520-0469(1998)055<3417:EADINS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. 15, 38 pp.

  • Chou, M. D., M. J. Suarez, C. H. Ho, M. M. Yan, and K. T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 202–214, doi:10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., K. T. Lee, S. C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159–169, doi:10.1175/1520-0442-12.1.159.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2008: A case study of convective boundary layer development during IHOP_2002: Numerical simulations compared to observations. Mon. Wea. Rev., 136, 2305–2320, doi:10.1175/2007MWR2193.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 13–24.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. L. Weisman, 1998: Comparison of supercell behavior in a convective boundary layer with that in a horizontally-homogeneous environment. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 8.3.

  • Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 858–878, doi:10.1175/1520-0493(1999)127<0858:NSOTIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1982: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 175–189.

  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

  • Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7, 81–106, doi:10.1007/BF00224974.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495–527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Etling, D., and R. A. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65, 215–248, doi:10.1007/BF00705527.

    • Search Google Scholar
    • Export Citation
  • Faller, A. J., 1965: Large eddies in the atmospheric boundary layer and their possible role in the formation of cloud rows. J. Atmos. Sci., 22, 176–184, doi:10.1175/1520-0469(1965)022<0176:LEITAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., J. L. Schols, E. W. Eloranta, and R. Coulter, 1991: Lidar observations of banded convection during BLX83. J. Appl. Meteor., 30, 312–326, doi:10.1175/1520-0450(1991)030<0312:LOOBCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 2647–2661, doi:10.1175/JAS3475.1.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and P. S. Dailey, 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev., 129, 2057–2072, doi:10.1175/1520-0493(2001)129<2057:NSOTIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp.

  • Haack, T., and H. N. Shirer, 1992: Mixed convective-dynamic roll vortices and their effects on initial wind and temperature profiles. J. Atmos. Sci., 49, 1181–1201, doi:10.1175/1520-0469(1992)049<1181:MCRVAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanak, K. M., D. K. Lilly, and J. T. Snow, 2000: The formation of vertical vortices in the convective boundary layer. Quart. J. Roy. Meteor. Soc., 126, 2789–2810, doi:10.1002/qj.49712656910.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., 1959: The band structure of the atmosphere. Tellus, 11, 267–294, doi:10.1111/j.2153-3490.1959.tb00033.x.

  • Kuettner, J. P., 1971: Cloud bands in the earth’s atmosphere. Tellus, 23, 404–425, doi:10.1111/j.2153-3490.1971.tb00585.x.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1963: Perturbations of plane Couette flow in stratified fluid and origin of cloud streets. Phys. Fluids, 6, 195–211, doi:10.1063/1.1706719.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the PBL. J. Atmos. Sci., 30, 1077–1091, doi:10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104, 524–539, doi:10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the instability of Ekman boundary flow. J. Atmos. Sci., 23, 481–494, doi:10.1175/1520-0469(1966)023<0481:OTIOEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and C. Hannon, 2006: Multiple-Doppler radar observations of the evolution of vorticity extrema in a convective boundary layer. Mon. Wea. Rev., 134, 355–374, doi:10.1175/MWR3060.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2007: Observations of vertical wind shear heterogeneity in convective boundary layers. Mon. Wea. Rev., 135, 843–861, doi:10.1175/MWR3334.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1262–1272, doi:10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 1749–1768, doi:10.1175/MWR3367.1.

    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1973: A vorticity source for large-scale dust devils and other comments on naturally occurring columnar vortices. J. Atmos. Sci., 30, 1717–1722, doi:10.1175/1520-0469(1973)030<1717:AVSFLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 3573–3587, doi:10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 999–1022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., 2013: Simulating supercell thunderstorms in a convective boundary layer: Effects on storm and boundary layer properties. Ph.D. dissertation, Department of Meteorology, The Pennsylvania State University, 203 pp.

  • Peckham, S. E., R. B. Wilhelmson, L. J. Wicker, and C. L. Ziegler, 2004: Numerical simulation of the interaction between the dryline and horizontal convective rolls. Mon. Wea. Rev., 132, 1792–1812, doi:10.1175/1520-0493(2004)132<1792:NSOTIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148–1164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174–191, doi:10.1175/1520-0493(2000)128<0174:TAOSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1916: On convection currents in a horizontal layer of fluid when the higher temperature is on the underside. Philos. Mag., 32, 529–546, doi:10.1080/14786441608635602.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., R. J. Doviak, and R. O. Gilmer, 1981: Clear-air roll vortices and turbulent motions as detected with an airborne gust probe and dual-Doppler radar. J. Appl. Meteor., 20, 678–685, doi:10.1175/1520-0450(1981)020<0678:CARVAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., 1999: The influence of horizontal variations in vertical shear and low-level moisture on numerically simulated convective storms. Ph.D. dissertation, School of Meteorology, University of Oklahoma, 236 pp.

  • Richardson, Y. P., K. K. Droegemeier, and R. P. Davies-Jones, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in vertical shear. Mon. Wea. Rev., 135, 3429–3455, doi:10.1175/MWR3463.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and K. M. Kanak, 2002: Vortex formation in ellipsoidal thermal bubbles. J. Atmos. Sci., 59, 2253–2269, doi:10.1175/1520-0469(2002)059<2253:VFIETB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shirer, H. N., 1980: Bifurcation and stability in a model of moist convection in a shearing environment. J. Atmos. Sci., 37, 1586–1602, doi:10.1175/1520-0469(1980)037<1586:BASIAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shirer, H. N., 1986: On cloud street development in three dimensions: Parallel and Rayleigh instabilities. Contrib. Atmos. Phys., 59, 126–149.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and H. N. Shirer, 1988: Development of boundary layer rolls from dynamic instabilities. J. Atmos. Sci., 45, 1007–1019, doi:10.1175/1520-0469(1988)045<1007:DOBLRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 665 pp.

  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 2395–2415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and J. Simpson, 1993: The Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 19–51.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., S. Lang, J. Simpson, C. H. Sui, B. Ferrier, and M. D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 2624–2651, doi:10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 1243–1261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769–784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505–526, doi:10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., T. W. Horst, and J. W. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127, 2160–2179, doi:10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. Ray, Ed., Amer. Meteor. Soc., 331–358.

  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 2088–2097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and L. J. Wicker, 2001: Numerical modeling of severe local storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 123–166.

  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 1785–1815, doi:10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Xue, M., and W. J. Martin, 2006a: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149–171, doi:10.1175/MWR3071.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006b: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172–191, doi:10.1175/MWR3072.1.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 997–1001, doi:10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke, 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 1001–1026, doi:10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 929 187 13
PDF Downloads 216 58 1