Impact of Variable-Resolution Meshes on Midlatitude Baroclinic Eddies Using CAM-MPAS-A

Sara A. Rauscher Fluid Dynamics and Solid Mechanics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Sara A. Rauscher in
Current site
Google Scholar
PubMed
Close
and
Todd D. Ringler Fluid Dynamics and Solid Mechanics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Todd D. Ringler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of a variable-resolution mesh on simulated midlatitude baroclinic eddies in idealized settings are examined. Both aquaplanet and Held–Suarez experiments are performed using the Model for Prediction Across Scales-Atmosphere (MPAS-A) hydrostatic dynamical core implemented within the National Science Foundation–Department of Energy (NSF–DOE) Community Atmosphere Model (CAM-MPAS-A). In the real world, midlatitude eddy activity is organized by orography, land–sea contrasts, and sea surface temperature anomalies. In these zonally symmetric idealized settings, transients should have an equal probability of occurring at any longitude. However, the use of a variable-resolution mesh with a circular high-resolution region centered at 30°N results in a maximum in eddy kinetic energy on the eastern side and downstream of this high-resolution region in both aquaplanet and Held–Suarez CAM-MPAS-A simulations. The presence of a geographically confined maximum in both simulations suggests this response is mainly attributable to CAM-MPAS-A’s ability to resolve eddies via the model dynamics as resolution increases. However, in the aquaplanet simulation, a secondary maximum in eddy kinetic energy is present, which is probably linked to the resolution dependencies of the CAM physics. These mesh responses must be considered when interpreting real-world variable-resolution CAM-MPAS-A simulations, particularly in climate change experiments.

Current affiliation: Department of Geography, University of Delaware, Newark, Delaware.

Corresponding author address: Sara A. Rauscher, Department of Geography, University of Delaware, 219 Pearson Hall, Newark, DE 19716. E-mail: rauscher@udel.edu

Abstract

The effects of a variable-resolution mesh on simulated midlatitude baroclinic eddies in idealized settings are examined. Both aquaplanet and Held–Suarez experiments are performed using the Model for Prediction Across Scales-Atmosphere (MPAS-A) hydrostatic dynamical core implemented within the National Science Foundation–Department of Energy (NSF–DOE) Community Atmosphere Model (CAM-MPAS-A). In the real world, midlatitude eddy activity is organized by orography, land–sea contrasts, and sea surface temperature anomalies. In these zonally symmetric idealized settings, transients should have an equal probability of occurring at any longitude. However, the use of a variable-resolution mesh with a circular high-resolution region centered at 30°N results in a maximum in eddy kinetic energy on the eastern side and downstream of this high-resolution region in both aquaplanet and Held–Suarez CAM-MPAS-A simulations. The presence of a geographically confined maximum in both simulations suggests this response is mainly attributable to CAM-MPAS-A’s ability to resolve eddies via the model dynamics as resolution increases. However, in the aquaplanet simulation, a secondary maximum in eddy kinetic energy is present, which is probably linked to the resolution dependencies of the CAM physics. These mesh responses must be considered when interpreting real-world variable-resolution CAM-MPAS-A simulations, particularly in climate change experiments.

Current affiliation: Department of Geography, University of Delaware, Newark, Delaware.

Corresponding author address: Sara A. Rauscher, Department of Geography, University of Delaware, 219 Pearson Hall, Newark, DE 19716. E-mail: rauscher@udel.edu
Save
  • Abiodun, B. J., W. J. Gutowski, and J. M. Prusa, 2008: Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part II: Dynamical influences on ITCZ behavior and tropical precipitation. Climate Dyn., 31, 811822, doi:10.1007/s00382-008-0382-x.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469486, doi:10.1175/1520-0442(1991)004<0469:SOSCTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., 1993: Sensitivity of dynamical quantities to horizontal resolution for a climate simulation using the ECMWF (Cycle 33) Model. J. Climate, 6, 796815, doi:10.1175/1520-0442(1993)006<0796:SODQTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, doi:10.1175/2009JAS3078.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, doi:10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., C. Dreveton, A. Braun, and D. Cariolle, 1994: The ARPEGE/IFS atmosphere model: A contribution to the French community climate modelling. Climate Dyn., 10, 249266, doi:10.1007/BF00208992.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2005: Global high resolution versus Limited Area Model climate change projections over Europe: Quantifying confidence level from PRUDENCE results. Climate Dyn., 25, 653670, doi:10.1007/s00382-005-0052-1.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., B. Govindasamy, J. P. Iorio, J. Milovich, K. R. Sperber, K. E. Taylor, M. F. Wehner, and S. L. Thompson, 2003: High-resolution simulations of global climate. Part 1: Present climate. Climate Dyn., 21, 371390, doi:10.1007/s00382-003-0339-z.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Fox-Rabinovitz, M., G. Stenchikov, M. Suarez, and L. Takacs, 1997: A finite-difference GCM dynamical core with a variable-resolution stretched grid. Mon. Wea. Rev., 125, 2943–2968, doi:10.1175/1520-0493(1997)125<2943:AFDGDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, and J. McGregor, 2006: Variable resolution general circulation models: Stretched-Grid Model Intercomparison Project (SGMIP). J. Geophys. Res.,111, D16104, doi:10.1029/2005JD006520.

  • Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 30223036, doi:10.1175/MWR-D-12-00338.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S.-P. Xie, 2002: Stationary eddy response to surface boundary forcing: Idealized GCM experiments. J. Atmos. Sci., 59, 18981915, doi:10.1175/1520-0469(2002)059<1898:SERTSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S.-P. Xie, 2003: Atmospheric response to zonal variations in midlatitude SST: Transient and stationary eddies and their feedback. J. Climate, 16, 33143329, doi:10.1175/1520-0442(2003)016<3314:ARTZVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 2204–2210, doi:10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2011: Downstream self-destruction of storm tracks. J. Atmos. Sci., 68, 24592464, doi:10.1175/JAS-D-10-05002.1.

    • Search Google Scholar
    • Export Citation
  • Kavulich, M. J., I. Szunyogh, G. Gyarmati, and R. J. Wilson, 2013: Local dynamics of baroclinic waves in the Martian atmosphere. J. Atmos. Sci., 70, 3415–3447, doi:10.1175/JAS-D-12-0262.1.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., T. Ringler, W. D. Collins, M. Taylor, and M. Ashfaq, 2013: A hierarchical evaluation of regional climate simulations. Eos, Trans. Amer. Geophys. Union, 94, 297298, doi:10.1002/2013EO340001.

    • Search Google Scholar
    • Export Citation
  • Levy, M., J. Overfelt, and M. A. Taylor, 2013: A variable resolution spectral element dynamical core in the Community Atmosphere Model. Tech. Note 2013-0697J, Sandia National Laboratories, 24 pp.

  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481653, doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorant, V., and J.-F. Royer, 2001: Sensitivity of equatorial convection to horizontal resolution in aquaplanet simulations with a variable-resolution GCM. Mon. Wea. Rev., 129, 27302745, doi:10.1175/1520-0493(2001)129<2730:SOECTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2010: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci., 67, 39844000, doi:10.1175/2010JAS3477.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 2005: C-CAM: Geometric aspects and dynamical formulation. Tech. Rep. 70, CSIRO Atmospheric Research, 43 pp.

  • McGregor, J. L., 2013: Recent developments in variable-resolution global climate modelling. Climatic Change, doi:10.1007/s10584-013-0866-5, in press.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., 2010: Description of the NCAR Community Atmosphere Model. Tech. Rep. NCAR/TN-485+STR, NCAR, 212 pp.

  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations. I: The proposal. Atmos. Sci. Lett., 1, 101107, doi:10.1006/asle.2000.0019.

    • Search Google Scholar
    • Export Citation
  • O’Brien, T. A., F. Li, W. D. Collins, S. A. Rauscher, T. D. Ringler, M. Taylor, S. M. Hagos, and L. R. Leung, 2013: Observed scaling in clouds and precipitation and scale incognizance in regional to global atmospheric models. J. Climate, 26, 9313–9333, doi:10.1175/JCLI-D-13-00005.1.

    • Search Google Scholar
    • Export Citation
  • Park, S.-H., W. C. Skamarock, J. B. Klemp, L. D. Fowler, and M. G. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Mon. Wea. Rev., 141, 31163129, doi:10.1175/MWR-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., and R. A. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19, 211236, doi:10.1007/s00382-001-0222-8.

    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., T. D. Ringler, W. C. Skamarock, and A. A. Mirin, 2013: Exploring a global multiresolution modeling approach using aquaplanet simulations. J. Climate, 26, 24322452, doi:10.1175/JCLI-D-12-00154.1.

    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dyn., 58, 475498, doi:10.1007/s10236-008-0157-2.

    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, doi:10.1016/j.jcp.2009.12.007.

    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., D. Jacobsen, M. Gunzberger, L. Ju, M. Duda, and W. Skamarock, 2011: Exploring a multiresolution modeling approach within the shallow-water equations. Mon. Wea. Rev., 139, 33483368, doi:10.1175/MWR-D-10-05049.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Rep. NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., T. D. Ringler, W. C. Skamarock, and J. B. Klemp, 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comput. Phys., 228, 83218335, doi:10.1016/j.jcp.2009.08.006.

    • Search Google Scholar
    • Export Citation
  • Wan, H., M. A. Giorgetta, and L. Bonaventura, 2008: Ensemble Held–Suarez test with a spectral transform model: Variability, sensitivity, and convergence. Mon. Wea. Rev., 136, 10751092, doi:10.1175/2007MWR2044.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. R. Leung, J. L. McGregor, D.-K. Lee, W.-C. Wang, Y. Ding, and F. Kimura, 2004: Regional climate modeling: Progress, challenges, and prospects. J. Meteor. Soc. Japan, 82, 15991628, doi:10.2151/jmsj.82.1599.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429, doi:10.1256/003590002321042036.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2008: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus, 60A, 848862, doi:10.1111/j.1600-0870.2008.00339.x.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548560, doi:10.1002/qj.1992.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. Kiehl, and J. Hack, 1995: Climate sensitivity of the NCAR Community Climate Model (CCM2) to horizontal resolution. Climate Dyn., 11, 377397, doi:10.1007/BF00209513.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. Overfelt, M. A. Taylor, and P. A. Ullrich, 2014: Aquaplanet experiments using CAM’s variable resolution dynamical core. J. Climate, 27, 5481–5503, doi:10.1175/JCLI-D-14-00004.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Role of convective-scale momentum transport in climate simulation. J. Geophys. Res., 100, 14171426, doi:10.1029/94JD02519.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 77 11
PDF Downloads 128 39 7