Ensemble Transform with 3D Rescaling Initialization Method

Juhui Ma Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Juhui Ma in
Current site
Google Scholar
PubMed
Close
,
Yuejian Zhu NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Yuejian Zhu in
Current site
Google Scholar
PubMed
Close
,
Dingchen Hou NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Dingchen Hou in
Current site
Google Scholar
PubMed
Close
,
Xiaqiong Zhou I.M. Systems Group, Inc., and NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Xiaqiong Zhou in
Current site
Google Scholar
PubMed
Close
, and
Malaquias Peña I.M. Systems Group, Inc., and NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Malaquias Peña in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ensemble transform with rescaling (ETR) method has been used to produce fast-growing components of analysis error in the NCEP Global Ensemble Forecast System (GEFS). The rescaling mask contained in the ETR method constrains the amplitude of perturbations to reflect regional variations of analysis error. However, because of a lack of suitable three-dimensional (3D) analysis error estimation, in the operational GEFS the mask is based on the estimated analysis error at 500 hPa and is not flow dependent but changes monthly. With the availability of an ensemble-based data assimilation system at NCEP, a 3D mask can be computed. This study generates initial perturbations by the ensemble transform with 3D rescaling (ET_3DR) and compares the performance with the ETR. Meanwhile, the ET_3DR is also applied within the ensemble Kalman filter (EnKF) method (hereafter EnKF_3DR).

Results from a set of experiments indicate that the 3D mask suppresses perturbations less in unstable regions. Relative to the ETR, the large amplitudes of the ET_3DR initial perturbations at 500 hPa better reflect areas of baroclinic instability over the extratropics and deep convection over the tropics. Furthermore, the maxima of the vertical distribution for the ET_3DR initial perturbations correspond to the heights of the subtropical westerly and tropical easterly jet regions. Such perturbations produce faster spread growths. Results with EnKF_3DR also show benefits from an orthonormalization by the ensemble transform algorithm and amplitude constraint by the 3D mask rescaling. Thus, the EnKF_3DR forecasts outperform the EnKF.

Corresponding author address: Juhui Ma, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China. E-mail: juhui.ma@gmail.com

Abstract

The ensemble transform with rescaling (ETR) method has been used to produce fast-growing components of analysis error in the NCEP Global Ensemble Forecast System (GEFS). The rescaling mask contained in the ETR method constrains the amplitude of perturbations to reflect regional variations of analysis error. However, because of a lack of suitable three-dimensional (3D) analysis error estimation, in the operational GEFS the mask is based on the estimated analysis error at 500 hPa and is not flow dependent but changes monthly. With the availability of an ensemble-based data assimilation system at NCEP, a 3D mask can be computed. This study generates initial perturbations by the ensemble transform with 3D rescaling (ET_3DR) and compares the performance with the ETR. Meanwhile, the ET_3DR is also applied within the ensemble Kalman filter (EnKF) method (hereafter EnKF_3DR).

Results from a set of experiments indicate that the 3D mask suppresses perturbations less in unstable regions. Relative to the ETR, the large amplitudes of the ET_3DR initial perturbations at 500 hPa better reflect areas of baroclinic instability over the extratropics and deep convection over the tropics. Furthermore, the maxima of the vertical distribution for the ET_3DR initial perturbations correspond to the heights of the subtropical westerly and tropical easterly jet regions. Such perturbations produce faster spread growths. Results with EnKF_3DR also show benefits from an orthonormalization by the ensemble transform algorithm and amplitude constraint by the 3D mask rescaling. Thus, the EnKF_3DR forecasts outperform the EnKF.

Corresponding author address: Juhui Ma, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China. E-mail: juhui.ma@gmail.com
Save
  • Annan, J. D., 2004: On the orthogonality of bred vectors. Mon. Wea. Rev., 132, 843849, doi:10.1175/1520-0493(2004)132<0843:OTOOBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765, doi:10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 1567158, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems. Mon. Wea. Rev., 133, 10761097, doi:10.1175/MWR2905.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Leutbecher, and L. Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 134, 20512066, doi:10.1002/qj.346.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Leutbecher, L. Isaksen, and J. Haseler, 2010: Combined use of EDA- and SV-based perturbations in the EPS. ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 22–28.

  • Cui, B., Z. Toth, Y. Zhu, and D. Hou, 2012: Bias correction for global ensemble forecast. Wea. Forecasting, 27, 396410, doi:10.1175/WAF-D-11-00011.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluation numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., C. Snyder, and J. S. Whitaker, 2003: Ensemble forecasts and the properties of flow-dependent analysis–error covariance singular vectors. Mon. Wea. Rev., 131, 17411758, doi:10.1175//2559.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hou, D., Z. Toth, and Y. Zhu, 2006: A stochastic parameterization scheme within NCEP global ensemble forecast system. 18th Conf. on Probability and Statistics, Atlanta, GA, Amer. Meteor. Soc., 4.5. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_101401.htm.]

  • Hou, D., Z. Toth, Y. Zhu, and W. Yang, 2008: Impact of a stochastic perturbation scheme on global ensemble forecast. 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 1.1. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm.]

  • King, R. E., and P. N. Paraskevopoulos, 1977: Digital Laguerre filters. Int. J. Circuit Theory Appl., 5, 8191, doi:10.1002/cta.4490050108.

    • Search Google Scholar
    • Export Citation
  • Ma, J., Y. Zhu, R. Wobus, and P. Wang, 2012: An effective configuration of ensemble size and horizontal resolution for NCEP GEFS. Adv. Atmos. Sci., 29, 782794, doi:10.1007/s00376-012-1249-y.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., M. Leutbecher, and E. Källén, 2008: Comparison between singular vectors and breeding vectors as initial perturbations for the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 136, 40924104, doi:10.1175/2008MWR2498.1.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., J. Nycander, and E. Källén, 2009: Flow-dependent versus flow-independent initial perturbations for ensemble prediction. Tellus, 61A, 194209, doi:10.1111/j.1600-0870.2008.00385.x.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 10931108, doi:10.1175/2007MWR2010.1.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2010: A local formulation of the ensemble transform (ET) analysis perturbation scheme. Wea. Forecasting, 25, 985993, doi:10.1175/2010WAF2222359.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633653, doi:10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., and Z. Toth, 2002: The effect of increased horizontal resolution on the NCEP global ensemble mean forecasts. Mon. Wea. Rev., 130, 11251143, doi:10.1175/1520-0493(2002)130<1125:TEOIHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 15901605, doi:10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 48984117, doi:10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Wei, M., and Z. Toth, 2003: A new measure of ensemble performance: Perturbation versus error correlation analysis (PECA). Mon. Wea. Rev., 131, 15491565, doi:10.1175//1520-0493(2003)131<1549:ANMOEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 2844, doi:10.1111/j.1600-0870.2006.00159.x.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, doi:10.1111/j.1600-0870.2007.00273.x.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 761 45 3
PDF Downloads 86 37 3