A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations

Max Duarte Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Max Duarte in
Current site
Google Scholar
PubMed
Close
,
Ann S. Almgren Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Ann S. Almgren in
Current site
Google Scholar
PubMed
Close
,
Kaushik Balakrishnan Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Kaushik Balakrishnan in
Current site
Google Scholar
PubMed
Close
,
John B. Bell Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by John B. Bell in
Current site
Google Scholar
PubMed
Close
, and
David M. Romps Department of Earth and Planetary Science, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by David M. Romps in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two common numerical techniques for integrating reversible moist processes in atmospheric flows are investigated in the context of solving the fully compressible Euler equations. The first is a one-step, coupled technique based on using appropriate invariant variables such that terms resulting from phase change are eliminated in the governing equations. In the second approach, which is a two-step scheme, separate transport equations for liquid water and water vapor are used, and no conversion between water vapor and liquid water is allowed in the first step, while in the second step a saturation adjustment procedure is performed that correctly allocates the water into its two phases based on the Clausius–Clapeyron formula. The numerical techniques described are first validated by comparing to a well-established benchmark problem. Particular attention is then paid to the effect of changing the time scale at which the moist variables are adjusted to the saturation requirements in two different variations of the two-step scheme. This study is motivated by the fact that when acoustic modes are integrated separately in time (neglecting phase change related phenomena), or when soundproof equations are integrated, the time scale for imposing saturation adjustment is typically much larger than the numerical one related to the acoustics.

Corresponding author address: Max Duarte, Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS 50A-1148, Berkeley, CA 94720. E-mail: mdgonzalez@lbl.gov

Abstract

Two common numerical techniques for integrating reversible moist processes in atmospheric flows are investigated in the context of solving the fully compressible Euler equations. The first is a one-step, coupled technique based on using appropriate invariant variables such that terms resulting from phase change are eliminated in the governing equations. In the second approach, which is a two-step scheme, separate transport equations for liquid water and water vapor are used, and no conversion between water vapor and liquid water is allowed in the first step, while in the second step a saturation adjustment procedure is performed that correctly allocates the water into its two phases based on the Clausius–Clapeyron formula. The numerical techniques described are first validated by comparing to a well-established benchmark problem. Particular attention is then paid to the effect of changing the time scale at which the moist variables are adjusted to the saturation requirements in two different variations of the two-step scheme. This study is motivated by the fact that when acoustic modes are integrated separately in time (neglecting phase change related phenomena), or when soundproof equations are integrated, the time scale for imposing saturation adjustment is typically much larger than the numerical one related to the acoustics.

Corresponding author address: Max Duarte, Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS 50A-1148, Berkeley, CA 94720. E-mail: mdgonzalez@lbl.gov
Save
  • Almgren, A. S., and Coauthors, 2010: CASTRO: A new compressible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J., 715, 1221–1238, doi:10.1088/0004-637X/715/2/1221.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Nonprecipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178–196, doi:10.1002/qj.49709941915.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 2917–2928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and R. D. Farley, 1984: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41, 329–350, doi:10.1175/1520-0469(1984)041<0329:SDWCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 2152–2158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection.Oxford University Press, 592 pp.

  • Grabowski, W. W., and P. K. Smolarkiewicz, 1990: Monotone finite-difference approximations to the advection-condensation problem. Mon. Wea. Rev., 118, 2082–2097, doi:10.1175/1520-0493(1990)118<2082:MFDATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1991: Cloud–environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527–546, doi:10.1175/1520-0469(1991)048<0527:CIIRTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hauf, T., and H. Höller, 1987: Entropy and potential temperature. J. Atmos. Sci., 44, 2887–2901, doi:10.1175/1520-0469(1987)044<2887:EAPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and W. R. Cotton, 2000: Large eddy simulation of shallow cumulus convection during BOMEX: Sensitivity to microphysics and radiation. J. Atmos. Sci., 57, 582–594, doi:10.1175/1520-0469(2000)057<0582:LESOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 2897–2913, doi:10.1175/MWR3440.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, W. P., and R. Klein, 2014: A moist pseudo-incompressible model. Atmos. Res., 142, 133–141, doi:10.1016/j.atmosres.2013.08.004.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47, 2580–2593, doi:10.1175/1520-0469(1990)047<2580:ATFFMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 2001: A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. J. Atmos. Sci., 58, 2073–2102, doi:10.1175/1520-0469(2001)058<2073:ADATFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 3779–3799, doi:10.1175/2008JAS2679.1.

  • Satoh, M., 2002: Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130, 1227–1245, doi:10.1175/1520-0493(2002)130<1227:CSFTCN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 2003: Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev., 131, 1033–1050, doi:10.1175/1520-0493(2003)131<1033:CSFACN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 3486–3514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Soong, S.-T., and Y. Ogura, 1973: A comparison between axisymmetric and slab-symmetric cumulus cloud models. J. Atmos. Sci., 30, 879–893, doi:10.1175/1520-0469(1973)030<0879:ACBAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 1992: A nonhydrostatic mesoscale model designed to simulate scale interaction. Mon. Wea. Rev., 120, 1342–1359, doi:10.1175/1520-0493(1992)120<1342:ANMMDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1981: The use of lce-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 1094–1102, doi:10.1175/1520-0493(1981)109<1094:TUOLLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2008: The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and tests of the nonhydrostatic dynamic core. Mon. Wea. Rev., 136, 4045–4062, doi:10.1175/2008MWR2523.1.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, G. Feingold, and B. Stevens, 2000: Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos. Res., 53, 171–183, doi:10.1016/S0169-8095(99)00044-7.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126, 1992–1999, doi:10.1175/1520-0493(1998)126<1992:ATSSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 378 81 9
PDF Downloads 160 62 4