Numerical Simulations of Lightning and Storm Charge of the 29–30 May 2004 Geary, Oklahoma, Supercell Thunderstorm Using EnKF Mobile Radar Data Assimilation

Kristin M. Calhoun Cooperative Institute for Mesoscale Meteorological Studies, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kristin M. Calhoun in
Current site
Google Scholar
PubMed
Close
,
Edward R. Mansell NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
,
Donald R. MacGorman NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Donald R. MacGorman in
Current site
Google Scholar
PubMed
Close
, and
David C. Dowell NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by David C. Dowell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Results from simulations are compared with dual-Doppler and total lightning observations of the 29–30 May 2004 high-precipitation supercell storm from the Thunderstorm Electrification and Lightning Experiment (TELEX). The simulations use two-moment microphysics with six hydrometeor categories and parameterizations for electrification and lightning while employing an ensemble Kalman filter for mobile radar data assimilation. Data assimilation was utilized specifically to produce a storm similar to the observed for ancillary analysis of the electrification and lightning associated with the supercell storm. The simulated reflectivity and wind fields well approximated that of the observed storm. Additionally, the simulated lightning flash rates were very large, as was observed. The simulation reveals details of the charge distribution and dependence of lightning on storm kinematics, characteristics that could not be observed directly. Storm electrification was predominately confined to the updraft core, but the persistence of both positive and negative charging of graupel in this region, combined with the kinematic evolution, limited the extent of charged areas of the same polarity. Thus, the propagation length of lightning flashes in this region was also limited. Away from the updraft core, regions of charge had greater areal extent, allowing flashes to travel farther without termination due to unfavorable charge potential. Finally, while the simulation produced the observed lightning holes and high-altitude lightning seen in the observations, it failed to produce the observed lightning initiations (or even lightning channels) in the distant downstream anvil as seen in the observed storm. Instead, the simulated lightning was confined to the main body of the storm.

Corresponding author address: Kristin Calhoun, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: kristin.kuhlman@noaa.gov

Abstract

Results from simulations are compared with dual-Doppler and total lightning observations of the 29–30 May 2004 high-precipitation supercell storm from the Thunderstorm Electrification and Lightning Experiment (TELEX). The simulations use two-moment microphysics with six hydrometeor categories and parameterizations for electrification and lightning while employing an ensemble Kalman filter for mobile radar data assimilation. Data assimilation was utilized specifically to produce a storm similar to the observed for ancillary analysis of the electrification and lightning associated with the supercell storm. The simulated reflectivity and wind fields well approximated that of the observed storm. Additionally, the simulated lightning flash rates were very large, as was observed. The simulation reveals details of the charge distribution and dependence of lightning on storm kinematics, characteristics that could not be observed directly. Storm electrification was predominately confined to the updraft core, but the persistence of both positive and negative charging of graupel in this region, combined with the kinematic evolution, limited the extent of charged areas of the same polarity. Thus, the propagation length of lightning flashes in this region was also limited. Away from the updraft core, regions of charge had greater areal extent, allowing flashes to travel farther without termination due to unfavorable charge potential. Finally, while the simulation produced the observed lightning holes and high-altitude lightning seen in the observations, it failed to produce the observed lightning initiations (or even lightning channels) in the distant downstream anvil as seen in the observed storm. Instead, the simulated lightning was confined to the main body of the storm.

Corresponding author address: Kristin Calhoun, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: kristin.kuhlman@noaa.gov
Save
  • Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, doi:10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, doi:10.1175/BAMS-86-9-1263.

    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., and C. P. R. Saunders, 1994: An experimental investigation of the inductive mechanism of thunderstorm electrification. J. Geophys. Res., 99, 10 62710 632, doi:10.1029/93JD01574.

    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., C. P. R. Saunders, R. P. Mitzeva, and S. L. Peck, 1997: The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos. Res., 43, 277295, doi:10.1016/S0169-8095(96)00043-9.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., S. A. Weiss, and K. M. Calhoun, 2012: Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology. Atmos. Res., 135–136, 274–284, doi:10.1016/j.atmosres.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2005: Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers. Mon. Wea. Rev., 133, 19781997, doi:10.1175/MWR2952.1.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 21992223, doi:10.1175/MWR-D-12-00258.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, doi:10.1175/JAS3681.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, L. J. Wicker, E. R. Mansell, and R. L. Tanamachi, 2012: Impact of the environmental low-level wind profile on ensemble forecasts of the 4 May 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones. Mon. Wea. Rev., 140, 696716, doi:10.1175/MWR-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, doi:10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Synder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. R., 2003: A fundamental limit on electric fields in air. Geophys. Res. Lett., 30, 2055, doi:10.1029/2003GL017781.

  • Dye, J. E., and J. C. Willett, 2007: Observed enhancement of reflectivity and the electric field in long-lived Florida anvils. Mon. Wea. Rev., 135, 33623380, doi:10.1175/MWR3484.1.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., P. L. Heinselman, D. MacGorman, and E. C. Bruning, 2011: Lightning activity in a hail-producing storm observed with phased-array radar. Mon. Wea. Rev., 139, 18091825, doi:10.1175/2010MWR3574.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., M. S. Gilmore, E. R. Mansell, L. J. Wicker, and J. M. Straka, 2006: Electrification and lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134, 31493172, doi:10.1175/MWR3231.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 26092627, doi:10.1175/MWR-D-11-00299.1.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606, doi:10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gish, O. H., 1944: Evaluation and interpretation of the columnar resistance of the atmosphere. Terr. Magn. Atmos. Electr., 49, 159168, doi:10.1029/TE049i003p00159.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., and B. C. Scott, 1978: Temperature and pressure perturbations within convective clouds derived from detailed air motion information: Preliminary testing. Mon. Wea. Rev., 106, 654661, doi:10.1175/1520-0493(1978)106<0654:TAPPWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Helsdon, J. H., Jr., and R. D. Farley, 1987: A numerical modeling study of a Montana thunderstorm: 2. model results versus observations involving electrical aspects. J. Geophys. Res., 92, 56615675, doi:10.1029/JD092iD05p05661.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 10971110, doi:10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens, 2008: Upward electrical discharges from thunderstorms. Nat. Geosci., 1, 233237, doi:10.1038/ngeo162.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Zielger, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757, doi:10.1175/MWR3217.1.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., D. MacGorman, M. Biggerstaff, and P. Krehbiel, 2009: Lightning initiation in the anvils of two supercell storms. Geophys. Res. Lett., 36, L07802, doi:10.1029/2008GL036650.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and P. R. Krehbiel, 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., GE-17, 162171, doi:10.1109/TGE.1979.294644.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., A. A. Few, and T. L. Teer, 1981: Layered lightning activity. J. Geophys. Res., 86, 99009910, doi:10.1029/JC086iC10p09900.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., J. M. Straka, and C. L. Ziegler, 2001: A lightning parameterization for numerical cloud models. J. Appl. Meteor., 40, 459478, doi:10.1175/1520-0450(2001)040<0459:ALPFNC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., W. D. Rust, P. R. Krehbiel, E. C. Bruning, and K. C. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133, 25832607, doi:10.1175/MWR2994.1.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013, doi:10.1175/2007BAMS2352.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2000: Electrification and lightning in simulated supercell and nonsupercell thunderstorms. Ph.D. thesis, University of Oklahoma, Norman, OK, 211 pp. [Available online at https://shareok.org/handle/11244/5911.]

  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107, 4075, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100, 70977103, doi:10.1029/95JD00020.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1988: The generation of electric charges and fields in thunderstorms. Proc. Roy. Soc. London, 415A, 303315, doi:10.1098/rspa.1988.0015.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Mitzeva, R., C. Saunders, and B. Tsenova, 2006: Parameterisation of non-inductive charging in thunderstorm regions free of cloud droplets. Atmos. Res., 82, 102111, doi:10.1016/j.atmosres.2005.12.006.

    • Search Google Scholar
    • Export Citation
  • Reap, R. M., and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518535, doi:10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riousset, J. A., V. P. Pasko, P. R. Krehbiel, R. J. Thomas, and W. Rison, 2007: Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations. J. Geophys. Res., 112, D15203, doi:10.1029/2006JD007621.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and D. R. MacGorman, 2002: Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29, 1571, doi:10.1029/2001GL014303.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956, doi:10.1029/97JD02644.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, C. Emerisic, E. E. Avila, and N. E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 26532673, doi:10.1256/qj.05.218.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, doi:10.1175/WAF-D-10-05026.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, S. G., and F. J. Scrase, 1937: The distribution of electricity in thunderclouds. Proc. Roy. Soc. London,161A, 309–352, doi:10.1098/rspa.1937.0148.

  • Simpson, S. G., and G. D. Robinson, 1941: The distribution of electricity in thunderclouds, II. Proc. Roy. Soc. London,177A, 281–328, doi:10.1098/rspa.1941.0013.

  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions 3. Synthesis. J. Geophys. Res., 103, 14 09714 108, doi:10.1029/97JD03545.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445466, doi:10.1175/JAM2211.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852, doi:10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and K. Miyawaki, 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025, doi:10.1175/1520-0469(2002)059<1018:ROREIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tan, Y., S. Tao, and B. Zhu, 2006: Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys. Res. Lett., 33, L09809, doi:10.1029/2005GL025523.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., L. J. Wicker, D. C. Dowell, H. B. Bluestein, D. T. Dawson II, and M. Xue, 2013: EnKF assimilation of high-resolution, mobile Doppler radar data of the 4 May 2007 Greensburg, Kansas, supercell into a numerical cloud model. Mon. Wea. Rev., 141, 625648, doi:10.1175/MWR-D-12-00099.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., S. A. Rutledge, and K. C. Wiens, 2007: Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS. Mon. Wea. Rev., 135, 36823706, doi:10.1175/2007MWR1954.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. A., W. D. Rust, D. R. MacGorman, E. C. Bruning, and P. R. Krehbiel, 2008: Evolving complex electrical structures of the STEPS 25 June 2000 multicell storm. Mon. Wea. Rev., 136, 741756, doi:10.1175/2007MWR2023.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1985: Electrical discharge propagation in and around space charge clouds. J. Geophys. Res., 90, 60596070, doi:10.1029/JD090iD04p06059.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., M. E. Weber, and R. E. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94, 213220, doi:10.1029/JD094iD11p13213.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, doi:10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509, doi:10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 84 2
PDF Downloads 193 43 0