Evaluation of Tropical Cyclone Center Identification Methods in Numerical Models

Leon T. Nguyen Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Leon T. Nguyen in
Current site
Google Scholar
PubMed
Close
,
John Molinari Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by John Molinari in
Current site
Google Scholar
PubMed
Close
, and
Diana Thomas Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Diana Thomas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Identifying the center of a tropical cyclone in a high-resolution model simulation has a number of operational and research applications, including constructing a track, calculating azimuthal means and perturbations, and diagnosing vortex tilt. This study evaluated several tropical cyclone center identification methods in a high-resolution Weather Research and Forecasting (WRF) Model simulation of a sheared, intensifying, asymmetric tropical cyclone. The simulated tropical cyclone (TC) contained downshear convective cells and a mesovortex embedded in a broader TC vortex, complicating the identification of the TC vortex center. It is shown that unlike other methods, the pressure centroid method consistently 1) placed the TC center within the region of weak storm-relative wind, 2) produced a smooth track, 3) yielded a vortex tilt that varied smoothly in magnitude and direction, and 4) was insensitive to changes in horizontal grid resolution. Based on these results, the authors recommend using the pressure centroid to define the TC center in high-resolution numerical models.

The pressure centroid was calculated within a circular region representing the size of the TC inner core. To determine this area, the authors propose normalizing by the innermost radius at which the azimuthally averaged storm-relative tangential wind at 2-km height equals 80% of the maximum (R80) at 2-km height. Although compositing studies have often normalized by the radius of maximum wind (RMW), R80 proved less sensitive to slight changes in flat tangential wind profiles. This enables R80 to be used as a normalization technique not only with intense TCs having peaked tangential wind profiles, but also with weaker TCs having flatter tangential wind profiles.

Corresponding author address: Leon T. Nguyen, Department of Atmospheric and Environmental Sciences, University at Albany/SUNY, ES 325, 1400 Washington Ave., Albany, NY 12222. E-mail: lnguyen@albany.edu

Abstract

Identifying the center of a tropical cyclone in a high-resolution model simulation has a number of operational and research applications, including constructing a track, calculating azimuthal means and perturbations, and diagnosing vortex tilt. This study evaluated several tropical cyclone center identification methods in a high-resolution Weather Research and Forecasting (WRF) Model simulation of a sheared, intensifying, asymmetric tropical cyclone. The simulated tropical cyclone (TC) contained downshear convective cells and a mesovortex embedded in a broader TC vortex, complicating the identification of the TC vortex center. It is shown that unlike other methods, the pressure centroid method consistently 1) placed the TC center within the region of weak storm-relative wind, 2) produced a smooth track, 3) yielded a vortex tilt that varied smoothly in magnitude and direction, and 4) was insensitive to changes in horizontal grid resolution. Based on these results, the authors recommend using the pressure centroid to define the TC center in high-resolution numerical models.

The pressure centroid was calculated within a circular region representing the size of the TC inner core. To determine this area, the authors propose normalizing by the innermost radius at which the azimuthally averaged storm-relative tangential wind at 2-km height equals 80% of the maximum (R80) at 2-km height. Although compositing studies have often normalized by the radius of maximum wind (RMW), R80 proved less sensitive to slight changes in flat tangential wind profiles. This enables R80 to be used as a normalization technique not only with intense TCs having peaked tangential wind profiles, but also with weaker TCs having flatter tangential wind profiles.

Corresponding author address: Leon T. Nguyen, Department of Atmospheric and Environmental Sciences, University at Albany/SUNY, ES 325, 1400 Washington Ave., Albany, NY 12222. E-mail: lnguyen@albany.edu
Save
  • Bell, M. M., and W. Lee, 2012: Objective tropical cyclone center tracking using single-Doppler radar. J. Appl. Meteor. Climatol., 51, 878–896, doi:10.1175/JAMC-D-11-0167.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573–1592, doi:10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 19–42, doi:10.1175/JAS3598.1.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., R. D. Torn, C. Snyder, C. Davis, W. Wang, and J. Done, 2013: Evaluation of the Advanced Hurricane WRF Data Assimilation System for the 2009 Atlantic hurricane season. Mon. Wea. Rev., 141, 523–541, doi:10.1175/MWR-D-12-00139.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688–704, doi:10.1175/2009MWR2976.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, J. S., R. W. Burpee, F. D. Marks, and J. L. Franklin, 1992: Real-time airborne analysis of aircraft data supporting operational hurricane forecasting. Wea. Forecasting, 7, 480–490, doi:10.1175/1520-0434(1992)007<0480:RTAAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, Y.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1966: Surface pressure variations at coastal stations during the period of irregular motion of Hurricane Carla of 1961. Mon. Wea. Rev., 94, 454–458, doi:10.1175/1520-0493(1966)094<0454:SPVACS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritcsh scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 1079–1090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, W., and F. D. Marks, 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part II: The GBVTD-simplex center finding algorithm. Mon. Wea. Rev., 128, 1925–1936, doi:10.1175/1520-0493(2000)128<1925:TCKSRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597–2616, doi:10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919–942, doi:10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 3869–3885, doi:10.1175/2010MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks, 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341–354, doi:10.1175/JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, S. T., W. Lee, M. M. Bell, G. M. Barnes, F. D. Marks, and P. P. Dodge, 2011: Intercomparison of Ground-Based Velocity Track Display (GBVTD)-retrieved circulation centers and structures of Hurricane Danny (1997) from two coastal WSR-88Ds. Mon. Wea. Rev., 139, 153–174, doi:10.1175/2010MWR3036.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 3361–3378, doi:10.1175/MWR-D-11-00293.1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401–427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1992: Nonlinear balance and potential-vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118, 987–1015, doi:10.1002/qj.49711850708.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 2306–2330, doi:10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425–444, doi:10.1175/MWR-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 2949–2969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 77–99, doi:10.1175/MWR-D-10-05075.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Willoughby, H. E., 1992: Linear motion of a shallow-water barotropic vortex as an initial-value problem. J. Atmos. Sci., 49, 2015–2031.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 1298–1305, doi:10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., L. W. White, H. E. Willoughby, and D. P. Jorgensen, 2013: A new parametric tropical cyclone tangential wind profile model. Mon. Wea. Rev., 141, 1884–1909, doi:10.1175/MWR-D-12-00115.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 65–86, doi:10.1175/JAS3597.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1367 389 44
PDF Downloads 1003 266 30