Finescale Radar and Airmass Structure of the Comma Head of a Continental Winter Cyclone: The Role of Three Airstreams

Robert M. Rauber Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Matthew K. Macomber Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Matthew K. Macomber in
Current site
Google Scholar
PubMed
Close
,
David M. Plummer Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by David M. Plummer in
Current site
Google Scholar
PubMed
Close
,
Andrew A. Rosenow Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Andrew A. Rosenow in
Current site
Google Scholar
PubMed
Close
,
Greg M. McFarquhar Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Brian F. Jewett Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Brian F. Jewett in
Current site
Google Scholar
PubMed
Close
,
David Leon Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by David Leon in
Current site
Google Scholar
PubMed
Close
, and
Jason M. Keeler Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Jason M. Keeler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Data from airborne W-band radar, thermodynamic fields from the Weather Research and Forecasting (WRF) Model, and air parcel back trajectories from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model are used to investigate the finescale reflectivity, vertical motion, and airmass structure of the comma head of a winter cyclone that produced 15–25 cm of snow across the U.S. Midwest on 29–30 January 2010.

The comma head consisted of three vertically stacked air masses: from bottom to top, an arctic air mass of Canadian origin, a moist cloud-bearing air mass of Gulf of Mexico origin, and a drier air mass originating mostly at low altitudes over Baja California and the Mexican Plateau. The drier air mass capped the entire comma head and significantly influenced precipitation distribution and type across the storm, limiting cloud depth on the warm side, and creating instability with respect to ice-saturated ascent, cloud-top generating cells, and a seeder–feeder process on the cold side. Convective generating cells with depths of 1.5–3.0 km and vertical air velocities of 1–3 m s−1 were ubiquitous atop the cold side of the comma head.

The airmass boundaries within the comma head lacked the thermal contrast commonly observed along fronts in other sectors of extratropical cyclones. The boundary between the Gulf and Canadian air masses, although quite distinct in terms of precipitation distribution, wind, and moisture, was marked by almost no horizontal thermal contrast at the time of observation. The higher-altitude airmass boundary between the Gulf of Mexico and Baja air masses also lacked thermal contrast, with the less-stable Baja air mass overriding the stable Gulf of Mexico air.

Corresponding author address: Robert M. Rauber, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: r-rauber@illinois.edu

Abstract

Data from airborne W-band radar, thermodynamic fields from the Weather Research and Forecasting (WRF) Model, and air parcel back trajectories from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model are used to investigate the finescale reflectivity, vertical motion, and airmass structure of the comma head of a winter cyclone that produced 15–25 cm of snow across the U.S. Midwest on 29–30 January 2010.

The comma head consisted of three vertically stacked air masses: from bottom to top, an arctic air mass of Canadian origin, a moist cloud-bearing air mass of Gulf of Mexico origin, and a drier air mass originating mostly at low altitudes over Baja California and the Mexican Plateau. The drier air mass capped the entire comma head and significantly influenced precipitation distribution and type across the storm, limiting cloud depth on the warm side, and creating instability with respect to ice-saturated ascent, cloud-top generating cells, and a seeder–feeder process on the cold side. Convective generating cells with depths of 1.5–3.0 km and vertical air velocities of 1–3 m s−1 were ubiquitous atop the cold side of the comma head.

The airmass boundaries within the comma head lacked the thermal contrast commonly observed along fronts in other sectors of extratropical cyclones. The boundary between the Gulf and Canadian air masses, although quite distinct in terms of precipitation distribution, wind, and moisture, was marked by almost no horizontal thermal contrast at the time of observation. The higher-altitude airmass boundary between the Gulf of Mexico and Baja air masses also lacked thermal contrast, with the less-stable Baja air mass overriding the stable Gulf of Mexico air.

Corresponding author address: Robert M. Rauber, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: r-rauber@illinois.edu
Save
  • Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3 (1), 118.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. II. Oxford University Press, 594 pp.

  • Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4, 317324, doi:10.1017/S1350482797000613.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2005: Observational synthesis of mesoscale structures within an explosively developing cyclone. Quart. J. Roy. Meteor. Soc., 131, 603623, doi:10.1256/qj.03.201.

    • Search Google Scholar
    • Export Citation
  • Carbone, R., and A. R. Bohne, 1975: Cellular snow generation—A Doppler radar study. J. Atmos. Sci., 32, 13841394, doi:10.1175/1520-0469(1975)032<1384:CSGDRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crocker, A. M., W. L. Godson, and C. M. Penner, 1947: Frontal contour charts. J. Meteor., 4, 9599, doi:10.1175/1520-0469(1947)004<0095:FCCBPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1964: Project Springfield Report. Defense Atomic Support Agency Report, DASA 1517, Washington, DC, 97 pp. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/607980.pdf.]

  • Danielsen, E. F., 1980: Stratospheric source for unexpectedly large values of ozone measured over the Pacific Ocean during Gamtag, August 1977. J. Geophys. Res., 85, 401412, doi:10.1029/JC085iC01p00401.

    • Search Google Scholar
    • Export Citation
  • Douglas, R. H., K. L. S. Gunn, and J. S. Marshall, 1957: Pattern in the vertical of snow generation. J. Meteor., 14, 95114, doi:10.1175/1520-0469(1957)014<0095:PITVOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Rolph, cited 2014: HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) Model. NOAA/Air Resources Laboratory, Silver Spring, MD. [Available online at http://ready.arl.noaa.gov/HYSPLIT.php.]

  • Fuhrmann, C. M., and C. E. Konrad, 2013: A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina. Wea. Forecasting, 28, 647667, doi:10.1175/WAF-D-12-00079.1.

    • Search Google Scholar
    • Export Citation
  • Galloway, J. L., 1958: The three-front model: Its philosophy, nature, construction and use. Weather, 13, 310, doi:10.1002/j.1477-8696.1958.tb05085.x.

    • Search Google Scholar
    • Export Citation
  • Galloway, J. L., 1960: The three-front model, the developing depression and the occluding process. Weather, 15, 293309, doi:10.1002/j.1477-8696.1960.tb01859.x.

    • Search Google Scholar
    • Export Citation
  • Godson, W. L., 1951: Synoptic properties of frontal surfaces. Quart. J. Roy. Meteor. Soc., 77, 633653, doi:10.1002/qj.49707733407.

  • Grim, J. A., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and M. Han, 2007: High-resolution observations of the trowal/warm frontal region of two continental winter cyclones. Mon. Wea. Rev., 135, 16291646, doi:10.1175/MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., M. P. Langleben, A. S. Dennis, and B. A. Power, 1954: Radar evidence of a generating level for snow. J. Meteor., 11, 2026, doi:10.1175/1520-0469(1954)011<0020:REOAGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, M., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and J. A. Grim, 2007: Mesoscale dynamics of the trowal and warm frontal regions of two continental winter cyclones. Mon. Wea. Rev., 135, 16471670, doi:10.1175/MWR3377.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and J. D. Locatelli, 1978: Rainbands, precipitation cores and generating cells in a cyclonic storm. J. Atmos. Sci., 35, 230241.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1990: Cold fronts aloft and the forecasting of precipitation and severe weather east of the Rocky Mountains. Wea. Forecasting, 5, 613626, doi:10.1175/1520-0434(1990)005<0613:CFAATF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kreitzberg, C. W., 1964: The structure of occlusions as determined from serial ascents and vertically-directed radar. Air Force Cambridge Research Laboratories, Rep. AFCRL-64-26, 121 pp.

  • Kreitzberg, C. W., 1968: The mesoscale wind field in an occlusion. J. Appl. Meteor., 7, 5367, doi:10.1175/1520-0450(1968)007<0053:TMWFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kreitzberg, C. W., and H. A. Brown, 1970: Mesoscale weather systems within an occlusion. J. Appl. Meteor., 9, 417432, doi:10.1175/1520-0450(1970)009<0417:MWSWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1992: Thermal structure and airflow in a model simulation of an occluded marine cyclone. Mon. Wea. Rev., 120, 22802297, doi:10.1175/1520-0493(1992)120<2280:TSAAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10, 2529, doi:10.1175/1520-0469(1953)010<0025:PTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998a: The structure and evolution of a continental winter cyclone. Part I: Frontal structure and the occlusion process. Mon. Wea. Rev., 126, 303328, doi:10.1175/1520-0493(1998)126<0303:TSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998b: The structure and evolution of a continental winter cyclone. Part II: Frontal forcing of an extreme snow event. Mon. Wea. Rev., 126, 329348, doi:10.1175/1520-0493(1998)126<0329:TSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1999: Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream. Mon. Wea. Rev., 127, 7088, doi:10.1175/1520-0493(1999)127<0070:QFOAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics. Wiley, 324 pp.

  • Mass, C. F., and D. M. Schultz, 1993: The structure and evolution of a simulated midlatitude cyclone over land. Mon. Wea. Rev., 121, 889917, doi:10.1175/1520-0493(1993)121<0889:TSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., C. E. Graves, S. Ng, and J. L. Smith, 2005: A process-oriented methodology toward understanding the organization of an extensive mesoscale snowband: A diagnostic case study of 4–5 December 1999. Wea. Forecasting, 20, 3550, doi:10.1175/WAF-829.1.

    • Search Google Scholar
    • Export Citation
  • Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold season–banded precipitation in northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, doi:10.1175/815.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, doi:10.1175/2007MWR2233.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, doi:10.1175/2009MWR2874.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, doi:10.1175/2010MWR3219.1.

    • Search Google Scholar
    • Export Citation
  • Penner, C. M., 1955: A three-front model for synoptic analyses. Quart. J. Roy. Meteor. Soc., 81, 8991, doi:10.1002/qj.49708134710.

  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., doi:10.1175/JAS-D-14-0100.1, in press.

  • Rauber, R. M., and Coauthors, 2014: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 2009: The NCEP North American mesoscale modeling system: Recent changes and future plans. 23rd Conf. on Weather Analysis and Forecasting, Omaha, NE, Amer. Meteor. Soc., 2A.4. [Available online at https://ams.confex.com/ams/pdfpapers/154114.pdf.]

  • Rosenow, A. R., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2001: Reexamining the cold conveyor belt. Mon. Wea. Rev., 129, 22052225, doi:10.1175/1520-0493(2001)129<2205:RTCCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and C. F. Mass, 1993: The occlusion process in a midlatitude cyclone over land. Mon. Wea. Rev., 121, 918940, doi:10.1175/1520-0493(1993)121<0918:TOPIAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and R. J. Trapp, 2003: Nonclassical cold-frontal structure caused by dry subcloud air in northern Utah during the Intermountain Precipitation Experiment (IPEX). Mon. Wea. Rev., 131, 22222246, doi:10.1175/1520-0493(2003)131<2222:NCSCBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and G. Vaughan, 2011: Occluded fronts and the occlusion process: A fresh look at conventional wisdom. Bull. Amer. Meteor. Soc., 92, 443466, doi:10.1175/2010BAMS3057.1.

    • Search Google Scholar
    • Export Citation
  • Stark, D., B. A. Colle, and S. E. Yuter, 2013: Observed microphysical evolution for two East Coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, doi:10.1175/MWR-D-12-00276.1.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., J. D. Locatelli, and P. V. Hobbs, 2002: Warm occlusions, cold occlusions, and forward-tilting cold fronts. Bull. Amer. Meteor. Soc., 83, 709721, doi:10.1175/1520-0477(2002)083<0709:WOCOAF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Syrett, W. J., B. A. Albrecht, and E. E. Clothiaux, 1995: Vertical cloud structure in a midlatitude cyclone from a 94-GHz radar. Mon. Wea. Rev., 123, 33933407, doi:10.1175/1520-0493(1995)123<3393:VCSIAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Wexler, R., 1955: Radar analysis of precipitation streamers observed 25 February 1954. J. Meteor., 12, 391393, doi:10.1175/1520-0469(1955)012<0391:RAOPSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wexler, R., and D. Atlas, 1959: Precipitation generating cells. J. Meteor., 16, 327332, doi:10.1175/1520-0469(1959)016<0327:PGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., L. W. Uccellini, and K. F. Brill, 1988: A model-based diagnostic study of the rapid development phase of the President’s Day cyclone. Mon. Wea. Rev., 116, 23372365, doi:10.1175/1520-0493(1988)116<2337:AMBDSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 366 114 13
PDF Downloads 234 71 9