The Convective Evolution and Rapid Intensification of Hurricane Earl (2010)

Stephanie N. Stevenson University at Albany, State University of New York, Albany, New York

Search for other papers by Stephanie N. Stevenson in
Current site
Google Scholar
PubMed
Close
,
Kristen L. Corbosiero University at Albany, State University of New York, Albany, New York

Search for other papers by Kristen L. Corbosiero in
Current site
Google Scholar
PubMed
Close
, and
John Molinari University at Albany, State University of New York, Albany, New York

Search for other papers by John Molinari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationship between an inner-core (r < 100 km) lightning outbreak and the subsequent rapid intensification (RI) of Hurricane Earl (2010) is examined using lightning strikes recorded by the World Wide Lightning Location Network (WWLLN) and in situ observations from various aircraft missions. Moderate (8.4 m s−1) northeasterly deep-layer (850–200 hPa) vertical wind shear, caused by outflow from Hurricane Danielle, existed over Earl at the beginning of a prolonged period of RI. Over 70% of the lightning strikes within a 500-km radius occurred downshear, with a preference toward downshear right in the outer rainbands, in agreement with previous studies.

The location of inner-core strikes in Earl differed markedly from previous studies. The inner-core lightning activity precessed from left of shear to upshear, an extremely rare event, beginning just prior to the onset of RI. Diagnosis of the vortex tilt midway through the lightning precession showed this convection was occurring downtilt in the upshear-left quadrant; however, limited observations could not confirm if the vortex tilt was precessing with the lightning. Elevated values of low-level relative humidity and CAPE were also found upshear and supported the inner-core convection, which was found to occur within the radius of maximum wind (RMW). Previous studies have shown that convection located inside the RMW promotes intensification. It is hypothesized that intensification may have occurred in part because the vertical wind shear acted to reduce the upshear tilt, and the occurrence of convection inside the RMW helped to enhance the warm core.

Corresponding author address: Stephanie N. Stevenson, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: sstevenson@albany.edu

Abstract

The relationship between an inner-core (r < 100 km) lightning outbreak and the subsequent rapid intensification (RI) of Hurricane Earl (2010) is examined using lightning strikes recorded by the World Wide Lightning Location Network (WWLLN) and in situ observations from various aircraft missions. Moderate (8.4 m s−1) northeasterly deep-layer (850–200 hPa) vertical wind shear, caused by outflow from Hurricane Danielle, existed over Earl at the beginning of a prolonged period of RI. Over 70% of the lightning strikes within a 500-km radius occurred downshear, with a preference toward downshear right in the outer rainbands, in agreement with previous studies.

The location of inner-core strikes in Earl differed markedly from previous studies. The inner-core lightning activity precessed from left of shear to upshear, an extremely rare event, beginning just prior to the onset of RI. Diagnosis of the vortex tilt midway through the lightning precession showed this convection was occurring downtilt in the upshear-left quadrant; however, limited observations could not confirm if the vortex tilt was precessing with the lightning. Elevated values of low-level relative humidity and CAPE were also found upshear and supported the inner-core convection, which was found to occur within the radius of maximum wind (RMW). Previous studies have shown that convection located inside the RMW promotes intensification. It is hypothesized that intensification may have occurred in part because the vertical wind shear acted to reduce the upshear tilt, and the occurrence of convection inside the RMW helped to enhance the warm core.

Corresponding author address: Stephanie N. Stevenson, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: sstevenson@albany.edu
Save
  • Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res.,115, D18206, doi:10.1029/2009JD013411.

  • Abarca, S. F., K. L. Corbosiero, and D. Vollaro, 2011: The World Wide Lightning Location Network and convective activity in tropical cyclones. Mon. Wea. Rev., 139, 175191, doi:10.1175/2010MWR3383.1.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192207, doi:10.1175/1520-0434(2000)015<0192:CIASFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 1942, doi:10.1175/JAS3598.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2011: Tropical cyclone report: Hurricane Earl. National Hurricane Center Rep. AL072010, 29 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL072010_Earl.pdf.]

  • Cecil, D. J., and E. J. Zipser, 1999: Relationship between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123, doi:10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, doi:10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Cline, I. M., 1926: Tropical Cyclones. MacMillian, 301 pp.

  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, and M. L. Black, 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133, 29052921, doi:10.1175/MWR3010.1.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, doi:10.1175/2007JAS2488.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, doi:10.1175/MWR-D-11-00236.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I. Storm structure. Mon. Wea. Rev., 105, 11191135, doi:10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interaction between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, doi:10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., R. H. Holzworth, K. S. Virts, J. M. Wallace, and S. Heckman, 2013: Radiated VLF energy differences of land and oceanic lightning. Geophys. Res. Lett., 40, 2390–2394, doi:10.1002/grl.50406.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vorticies in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 12871311, doi:10.1175/1520-0469(1984)041<1287:MACSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856, doi:10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lay, E. H., R. H. Holzworth, C. J. Rodger, J. N. Thomas, O. Pinto Jr., and R. L. Dowden, 2004: WWLL global lightning detection system: Regional validation study in Brazil. Geophys. Res. Lett.,31, L03102, doi:10.1029/2003GL018882.

  • Miller, B. I., 1958: Rainfall rates in Florida hurricanes. Mon. Wea. Rev., 86, 258264, doi:10.1175/1520-0493(1958)086<0258:RRIFH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Distribution of helicity, CAPE, and shear in tropical cyclones. J. Atmos. Sci., 67, 274284, doi:10.1175/2009JAS3090.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Moore, V. Idone, R. Henderson, and A. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99, 16 66516 676, doi:10.1029/94JD00722.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Moore, and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534, doi:10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509, doi:10.1175/JAS3291.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 24522463, doi:10.1175/JAS-D-11-0254.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. A. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2283, in press.

    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., R. K. Taft, J. L. Vigh, B. D. McNoldy, and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. J. Adv. Model. Earth Syst.,4, M08001, doi:10.1029/2011MS000104.

  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 33613378, doi:10.1175/MWR-D-11-00293.1.

    • Search Google Scholar
    • Export Citation
  • Pan, L., X. Qie, D. Liu, D. Wang, and J. Yang, 2010: The lightning activities in super typhoons over the Northwest Pacific. Sci. China Earth Sci., 53, 12411248, doi:10.1007/s11430-010-3034-z.

    • Search Google Scholar
    • Export Citation
  • Pan, L., X. Qie, and D. Wang, 2014: Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean. Adv. Atmos. Sci., 31, 581592, doi:10.1007/s00376-013-3115-y.

    • Search Google Scholar
    • Export Citation
  • Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329332, doi:10.1038/ngeo477.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, doi:10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425444, doi:10.1175/MWR-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., J. B. Brundell, R. H. Holzworth, and E. H. Lay, 2009: Growing detection efficiency of the World Wide Lightning Location Network. Vol. 1118, AIP Conf. Proc.: Coupling of Thunderstorms and Lightning Discharges to Near-Earth Space, Corte, France, AIP, 15–20, doi:10.1063/1.3137706.

  • Rodgers, E. B., S. W. Chung, and H. F. Pierce, 1994: A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones. J. Appl. Meteor., 33, 129139, doi:10.1175/1520-0450(1994)033<0129:ASOANS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, doi:10.1175/2009JAS3122.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study on the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599, doi:10.1175//2546.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and D. T. Shea, 2013: Evaluation WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 23442348, doi:10.1002/grl.50428.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122, 18871896, doi:10.1175/1520-0493(1994)122<1887:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomas, J. N., N. N. Solorzano, S. A. Cummer, and R. H. Holzworth, 2010: Polarity and energetics of inner core lightning in three intense North Atlantic hurricanes. J. Geophys. Res., 115, A00E15, doi:10.1029/2009JA014777.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, doi:10.1175/BAMS-D-12-00082.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332, doi:10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586, doi:10.1175/JAS3597.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 854 223 28
PDF Downloads 420 120 27