Impact of Infrared, Microwave, and Radio Occultation Satellite Observations on Operational Numerical Weather Prediction

L. Cucurull Global Systems Division, NOAA/OAR/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by L. Cucurull in
Current site
Google Scholar
PubMed
Close
and
R. A. Anthes University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by R. A. Anthes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A comparison of the impact of infrared (IR), microwave (MW), and radio occultation (RO) observations on NCEP’s operational global forecast model over the month of March 2013 is presented. Analyses and forecasts with only IR, MW, and RO observations are compared with analyses and forecasts with no satellite data and with each other. Overall, the patterns of the impact of the different satellite systems are similar, with the MW observations producing the largest impact on the analyses and RO producing the smallest. Without RO observations, satellite radiances are over– or under–bias corrected and RO acts as an anchor observation, reducing the forecast biases globally. Positive correlation coefficients of temperature impacts are generally found between the different satellite observation analyses, indicating that the three satellite systems are affecting the global temperatures in a similar way. However, the correlation in the lower troposphere among all three systems is surprisingly small. Correlations for the moisture field tend to be small in the lower troposphere between the different satellite analyses. The impact of the satellite observations on the 500-hPa geopotential height forecasts is much different in the Northern and Southern Hemispheres. In the Northern Hemisphere, all the satellite observations together make a small positive impact compared to the base (no satellite) forecasts. The IR and MW, but not the RO, make a small positive impact when assimilated alone. The situation is considerably different in the Southern Hemisphere, where all the satellite observations together make a much larger positive impact, and all three observation types (IR, MW, and RO) make similar and significant impacts.

Corresponding author address: Lidia Cucurull, Global Systems Division, Office of the Director, NOAA/Earth System Research Laboratory (ESRL), 325 Broadway, R/GSD, Boulder, CO 80305. E-mail: lidia.cucurull@noaa.gov

Abstract

A comparison of the impact of infrared (IR), microwave (MW), and radio occultation (RO) observations on NCEP’s operational global forecast model over the month of March 2013 is presented. Analyses and forecasts with only IR, MW, and RO observations are compared with analyses and forecasts with no satellite data and with each other. Overall, the patterns of the impact of the different satellite systems are similar, with the MW observations producing the largest impact on the analyses and RO producing the smallest. Without RO observations, satellite radiances are over– or under–bias corrected and RO acts as an anchor observation, reducing the forecast biases globally. Positive correlation coefficients of temperature impacts are generally found between the different satellite observation analyses, indicating that the three satellite systems are affecting the global temperatures in a similar way. However, the correlation in the lower troposphere among all three systems is surprisingly small. Correlations for the moisture field tend to be small in the lower troposphere between the different satellite analyses. The impact of the satellite observations on the 500-hPa geopotential height forecasts is much different in the Northern and Southern Hemispheres. In the Northern Hemisphere, all the satellite observations together make a small positive impact compared to the base (no satellite) forecasts. The IR and MW, but not the RO, make a small positive impact when assimilated alone. The situation is considerably different in the Southern Hemisphere, where all the satellite observations together make a much larger positive impact, and all three observation types (IR, MW, and RO) make similar and significant impacts.

Corresponding author address: Lidia Cucurull, Global Systems Division, Office of the Director, NOAA/Earth System Research Laboratory (ESRL), 325 Broadway, R/GSD, Boulder, CO 80305. E-mail: lidia.cucurull@noaa.gov
Save
  • Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech., 4, 10771103, doi:10.5194/amt-4-1077-2011.

    • Search Google Scholar
    • Export Citation
  • Aparicio, J. M., and G. Deblonde, 2008: Impact of the assimilation of CHAMP refractivity profiles in Environment Canada global forecasts. Mon. Wea. Rev., 136, 257275, doi:10.1175/2007MWR1951.1.

    • Search Google Scholar
    • Export Citation
  • Baker, N., and R. Daley, 2000: Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Quart. J. Roy. Meteor. Soc., 126, 14311454, doi:10.1002/qj.49712656511.

    • Search Google Scholar
    • Export Citation
  • Ballish, B. A., and V. K. Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures. Bull. Amer. Meteor. Soc., 89, 16891708, doi:10.1175/2008BAMS2332.1.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., G. Radnóti, S. Healy, and C. Cardinali, 2014: GNSS radio occultation constellation observing system experiments. Mon. Wea. Rev., 142, 555, doi:10.1175/MWR-D-13-00130.1.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., 2014: On some aspects of the impact of GPSRO observations in global numerical weather prediction. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2320, in press.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2009: Forecast sensitivity to observation (FSO) as a diagnostic tool. ECMWF Tech. Memo. 599, 26 pp.

  • Cardinali, C., and F. Prates, 2011: Performance measurement with advanced diagnostic tools of all-sky microwave imager radiances in 4D-Var. Quart. J. Roy. Meteor. Soc., 137, 20382046, doi:10.1002/qj.865.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., and S. B. Healy, 2014: Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2300, in press.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., L. Isaksen, and E. Andersson, 2003: Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Mon. Wea. Rev., 131, 18651877, doi:10.1175/2569.1.

    • Search Google Scholar
    • Export Citation
  • Collard, A. D., and S. B. Healy, 2003: The combined impact of future space-based atmospheric sounding instruments on numerical weather prediction analysis fields: A simulation study. Quart. J. Roy. Meteor. Soc., 129, 27412760, doi:10.1256/qj.02.124.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, doi:10.1175/2009WAF2222302.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, doi:10.1029/2012JD017782.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 2032, doi:10.1175/JTECH-D-13-00059.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proc. Workshop on Assimilation of High-Spectral-Resolution Sounders in NWP, Reading, United Kingdom, ECMWF, 97–112.

  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, doi:10.1256/qj.05.137.

  • Dee, D. P., and S. Uppala, 2008: Variational bias correction in ERA-Interim. ECMWF Tech. Memo. 575, 26 pp.

  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS clouds-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, doi:10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 2007: Interpretation of an adjoint-derived observational impact measure. Tellus, 59A, 273276, doi:10.1111/j.1600-0870.2006.00217.x.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Y. Zhu, 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus, 61A, 179193, doi:10.1111/j.1600-0870.2008.00388.x.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., Y. Zhu, and R. M. Errico, 2007: Examination of various-order adjoint-based approximations of observation impact. Meteor. Z., 16, 685692, doi:10.1127/0941-2948/2007/0248.

    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., E. R. Kursinski, W. I. Bertiger, L. J. Romans, and K. R. Hardy, 1994: Assessment of GPS occultations for atmospheric profiling. Preprints, Seventh Conf. on Satellite Meteorology and Oceonography, Monterey, CA, Amer. Meteor. Soc., J7J10.

  • Hajj, G. A., E. R. Kursinski, L. J. Romans, W. I. Bertiger, and S. S. Leroy, 2002: A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys., 64, 451469, doi:10.1016/S1364-6826(01)00114-6.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2008: Assimilation of GPS radio occultation measurements at ECMWF. GRAS SAF Workshop on Applications of GPSRO Measurements, Reading, United Kingdom, ECMWF, 99–109. [Available online at www.romsaf.org/Workshops/agrom_prog/Healy.pdf.]

  • Healy, S. B., 2013: Surface pressure information retrieved from GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 139, 21082118, doi:10.1002/qj.2090.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., and J-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605–623, doi:10.1256/qj.04.182.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804, doi:10.1029/2004GL020806.

    • Search Google Scholar
    • Export Citation
  • Kelly, G., and J. Pailleux, 1988: Use of satellite vertical sounder data in the ECMWF analysis system. ECMWF Tech. Memo. 143, 46 pp.

  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, doi:10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, K. R. Hardy, J. T. Schofield, and R. Linfield, 1997: Observing Earth’s atmosphere with radio occultation measurements. J. Geophys. Res., 102, 23 42923 465, doi:10.1029/97JD01569.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman, 2000: The GPS radio occultation technique. Terr. Atmos. Oceanic Sci., 11, 53114.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, doi:10.1111/j.1600-0870.2004.00056.x.

    • Search Google Scholar
    • Export Citation
  • McNally, T., M. Bonavita, and J.-N. Thépaut, 2014: The role of satellite data in the forecasting of Hurricane Sandy. Mon. Wea. Rev., 142, 634646, doi:10.1175/MWR-D-13-00170.1.

    • Search Google Scholar
    • Export Citation
  • Melbourne, W. G., and Coauthors, 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. Tech. Rep. 94-18, Jet Propulsion Laboratory, Pasadena, CA, 158 pp.

  • Poli, P., P. Moll, D. Puech, F. Rabier, and S. B. Healy, 2009: Quality control, error analysis, and impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction. Terr. Atmos. Oceanic Sci., 20, 101113, doi:10.3319/TAO.2008.01.21.02(F3C).

    • Search Google Scholar
    • Export Citation
  • Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 1972–1990, doi:10.1002/qj.722.

    • Search Google Scholar
    • Export Citation
  • Radnóti, G., P. Bauer, A. McNally, C. Cardinali, S. B. Healy, and P. de Rosnay, 2010: ECMWF study on the impact of future developments of the space-based observing system on numerical weather prediction. ECMWF Tech. Memo. 638, 115 pp.

  • Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office. Quart. J. Roy. Meteor. Soc., 136, 116131, doi:10.1002/qj.521.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., and Coauthors, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102, 29 84929 866, doi:10.1029/97JD02400.

    • Search Google Scholar
    • Export Citation
  • Todling, R., 2013: Comparing two approaches for assessing observation impact. Mon. Wea. Rev., 141, 14841505, doi:10.1175/MWR-D-12-00100.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2012: Final report of the Fifth WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction. WMO Tech. Rep. 2012-1, 25 pp. [Available online at www.wmo.int/pages/prog/www/OSY/Meetings/NWP5_Sedona2012/Final_Report.pdf.]

  • Yang, F., 2013: Review of GFS forecast skills in 2013. NCEP Tech. Rep., 69 pp. [Available online at www.emc.ncep.noaa.gov/GFS/docs/GFS.performance.review.2013.pdf.]

  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Yung, 2013: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 1479–1492, doi:10.1002/qj.2233.

    • Search Google Scholar
    • Export Citation
  • Zou, X., L. Lin, and F. Weng, 2014: Absolute calibration of ATMS upper level temperature sounding channels using GPS RO observations. IEEE Trans. Geosci. Remote Sens., 52, 13971406, doi:10.1109/TGRS.2013.2250981.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 541 139 3
PDF Downloads 134 26 2