• Auligné, T., 2007: An objective approach to modelling biases in satellite radiances: Application to AIRS and AMSU-A. Quart. J. Roy. Meteor. Soc., 133, 17891801, doi:10.1002/qj.145.

    • Search Google Scholar
    • Export Citation
  • Auligné, T., 2014: Multivariate minimum residual method for cloud retrieval. Part II: Real observations experiments. Mon. Wea. Rev.,142, 4399–4415, doi:10.1175/MWR-D-13-00173.1.

  • Auligné, T., , and A. P. McNally, 2007: Interaction between bias correction and quality control. Quart. J. Roy. Meteor. Soc., 133, 643653, doi:10.1002/qj.57.

    • Search Google Scholar
    • Export Citation
  • Auligné, T., , A. P. McNally, , and D. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 631642, doi:10.1002/qj.56.

    • Search Google Scholar
    • Export Citation
  • Bishop, C., 1995: Neural Networks for Pattern Recognition. Oxford University Press, 482 pp.

  • Bridle, J., 1990: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. Neurocomputing: Algorithms, Architectures and Applications, F. Fogelman Soulie and J. Herault, Eds., Springer-Verlag, 227–236.

  • Chahine, M., 1974: Remote sounding of cloudy atmospheres. I: The single cloud layer. J. Atmos. Sci.,31, 233243, doi:10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chahine, M., 1975: An analytic transformation for remote sensing of clear-column atmospheric temperature profiles. J. Atmos. Sci.,32, 19461952, doi:10.1175/1520-0469(1975)032<1946:AATFRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., , P. Bauer, , J.-F. Mahfouf, , and J.-J. Morcrette, 2002: Variational retrieval of cloud profile from ATOVS data. Quart. J. Roy. Meteor. Soc., 128, 25112525, doi:10.1256/qj.01.153.

    • Search Google Scholar
    • Export Citation
  • Collard, A., 1999: The effect of undetected cloud on IASI retrievals. Forecasting Research Tech. Rep. 261, 23 pp.

  • Dahoui, M., , L. Lavanant, , F. Rabier, , and T. Auligné, 2005: Use of MODIS imager to help dealing with AIRS cloudy radiances. Quart. J. Roy. Meteor. Soc., 131, 25592579, doi:10.1256/qj.04.90.

    • Search Google Scholar
    • Export Citation
  • English, S., , J. Eyre, , and J. Smith, 1999: A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 125, 23592378, doi:10.1002/qj.49712555902.

    • Search Google Scholar
    • Export Citation
  • Eyre, J., , and W. Menzel, 1989: Retrieval of cloud parameters from satellite sounder data: A simulation study. J. Appl. Meteor.,28, 267275, doi:10.1175/1520-0450(1989)028<0267:ROCPFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fourrié, N., , and F. Rabier, 2004: Cloud characteristics and channel selection for IASI radiances in meteorologically sensitive areas. Quart. J. Roy. Meteor. Soc., 130, 18391856, doi:10.1256/qj.03.27.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M., , Y. Qu, , L. McMillin, , W. Wolf, , L. Zhou, , and M. Divakarla, 2003: AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans. Geosci. Remote Sens., 41, 379389, doi:10.1109/TGRS.2002.808307.

    • Search Google Scholar
    • Export Citation
  • Han, Y., , P. van Delst, , Q. Liu, , F. Weng, , B. Yan, , R. Treadon, , and J. C. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM). Tech. Rep. 122, NOAA, 33 pp.

  • Huang, A., , W. Smith, , J. Li, , P. Antonelli, , X. Wu, , R. Knuteson, , O. B. Huang, , and B. Osborne, 2004: Minimum local emissivity variance retrieval of cloud altitude and effective spectral emissivity—Simulation and initial verification. J. Appl. Meteor., 43, 795809, doi:10.1175/2090.1.

    • Search Google Scholar
    • Export Citation
  • Joiner, J., , and L. Rokke, 2000: Variational cloud clearing with TOVS data. Quart. J. Roy. Meteor. Soc., 126, 725748, doi:10.1002/qj.49712656316.

    • Search Google Scholar
    • Export Citation
  • Li, J., , W. P. Menzel, , and A. J. Schreiner, 2001: Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements. J. Appl. Meteor., 40, 312330, doi:10.1175/1520-0450(2001)040<0312:VROCPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., , F. Chevallier, , and S. Tjemkes, 2001: An improved general fast radiative transfer model for the assimilation of radiance observations. ECMWF Tech. Memo. 345, ECMWF, 44 pp.

  • McNally, A. P., 2002: A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders. Quart. J. Roy. Meteor. Soc., 128, 25512556, doi:10.1256/qj.01.206.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., , and P. D. Watts, 2003: A cloud detection algorithm for high spectral resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 34113423, doi:10.1256/qj.02.208.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , W. L. Smith, , and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22, 377384, doi:10.1175/1520-0450(1983)022<0377:ICMWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , J. A. Curry, , and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I : Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E. G., , S. J. English, , and J. R. Eyre, 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 134, 737749, doi:10.1002/qj.243.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C., 1996: Information content and optimization of high-spectral-resolution measurements. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P.B. Hays and J. Wang, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 2830), 136–147, doi:10.1117/12.256110.

  • Saunders, R., , M. Matricardi, , and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc.,125, 1407–1425, doi:10.1002/qj.1999.49712555615.

    • Search Google Scholar
    • Export Citation
  • Serio, C., , A. Lubrano, , F. Romano, , and H. Shimoda, 2000: Cloud detection over sea surface by use of autocorrelation functions of upwelling infrared spectra in the 800-900-cm−1 window region. Appl. Opt., 39, 35653572, doi:10.1364/AO.39.003565.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, W. L., , and R. Frey, 1990: On cloud altitude determinations from High Resolution Interferometer Sounder (HIS) observations. J. Appl. Meteor., 29, 658–662, doi:10.1175/1520-0450(1990)029<0658:OCADFH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., , D. Reuter, , and M. Chahine, 1987: Cloud fields retrieved from analysis of HIRS2/MSU sounding data. J. Geophys. Res.,92, 40354050, doi:10.1029/JD092iD04p04035.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., , C. Barnet, , and J. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390410, doi:10.1109/TGRS.2002.808236.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 3
PDF Downloads 12 12 5

Multivariate Minimum Residual Method for Cloud Retrieval. Part I: Theoretical Aspects and Simulated Observation Experiments

View More View Less
  • 1 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, and National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

A new method is presented for cloud detection and the retrieval of three-dimensional cloud fraction from satellite infrared radiances. This method, called multivariate minimum residual (MMR), is inspired by the minimum residual technique by Eyre and Menzel and is especially suitable for exploiting the large number of channels from hyperspectral infrared sounders. Its accuracy is studied in a theoretical framework where the observations and the numerical model are supposed perfect. Of particular interest is the number of independent information that can be found on the cloud according to the number of channels used. The technical implementation of the method is also briefly discussed. The MMR scheme is validated with the Atmospheric Infrared Sounder (AIRS) instrument using simulated observations. This new method is compared with the cloud-detection scheme from McNally and Watts that is operational at the European Centre for Medium-Range Weather Forecasts (ECMWF) and considered to be the state of the art in cloud detection for hyperspectral infrared sounders.

Corresponding author address: Thomas Auligné, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: auligne@ucar.edu

Abstract

A new method is presented for cloud detection and the retrieval of three-dimensional cloud fraction from satellite infrared radiances. This method, called multivariate minimum residual (MMR), is inspired by the minimum residual technique by Eyre and Menzel and is especially suitable for exploiting the large number of channels from hyperspectral infrared sounders. Its accuracy is studied in a theoretical framework where the observations and the numerical model are supposed perfect. Of particular interest is the number of independent information that can be found on the cloud according to the number of channels used. The technical implementation of the method is also briefly discussed. The MMR scheme is validated with the Atmospheric Infrared Sounder (AIRS) instrument using simulated observations. This new method is compared with the cloud-detection scheme from McNally and Watts that is operational at the European Centre for Medium-Range Weather Forecasts (ECMWF) and considered to be the state of the art in cloud detection for hyperspectral infrared sounders.

Corresponding author address: Thomas Auligné, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: auligne@ucar.edu
Save