Numerical Simulations and Observations of Airflow through the ‘Alenuihāhā Channel, Hawaii

David Eugene Hitzl Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by David Eugene Hitzl in
Current site
Google Scholar
PubMed
Close
,
Yi-Leng Chen Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Yi-Leng Chen in
Current site
Google Scholar
PubMed
Close
, and
Hiep Van Nguyen Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Hiep Van Nguyen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the summer, sustained winds in the ‘Alenuihāhā Channel, Hawaii, may exceed 20 m s−1 with higher gusts. The Advanced Research Weather Research and Forecasting model is used to diagnose airflow in the Hawaiian coastal waters. High-resolution (2 km) runs are performed for July 2005 covering the ‘Alenuihāhā Channel and nested in a 6-km state domain. Under normal trade wind conditions (7–8 m s−1), winds at the channel entrance are 1–2 m s−1 faster than upstream due to the convergence of the deflected airflows by the islands of Maui and Hawaii, and accelerate through the channel due to along-gap pressure gradients and lower pressure in the wakes of both islands. The acceleration is accompanied by descending airflow (>9 cm s−1) in the exit region with lowering of the trade wind inversion. Deceleration occurs downstream of the channel exit with a rapid change from sinking motion to rising motion (>3 cm s−1). Under normal or strong trade wind conditions, the flow is subcritical [Froude number (Fr) < 1] upstream of the channel, supercritical (Fr > 1) in the exit region, and subcritical again (Fr < 1) downstream with a weak hydraulic jump. The localized sinking motion on the lee side of bordering ridgelines (>1 m s−1) is most significant in the afternoon hours and results in warming and lowering of surface pressure on the lee side, into the channel, and farther downstream. As a result, the channel winds and the wind speed maximum along the southeastern coast of Maui exhibit an afternoon maximum.

Current affiliation: Vietnam Institute of Meteorology, Hydrology, and Climate Change, Hanoi, Vietnam.

Corresponding author address: Yi-Leng Chen, Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI 96822. E-mail: yileng@hawaii.edu

Abstract

During the summer, sustained winds in the ‘Alenuihāhā Channel, Hawaii, may exceed 20 m s−1 with higher gusts. The Advanced Research Weather Research and Forecasting model is used to diagnose airflow in the Hawaiian coastal waters. High-resolution (2 km) runs are performed for July 2005 covering the ‘Alenuihāhā Channel and nested in a 6-km state domain. Under normal trade wind conditions (7–8 m s−1), winds at the channel entrance are 1–2 m s−1 faster than upstream due to the convergence of the deflected airflows by the islands of Maui and Hawaii, and accelerate through the channel due to along-gap pressure gradients and lower pressure in the wakes of both islands. The acceleration is accompanied by descending airflow (>9 cm s−1) in the exit region with lowering of the trade wind inversion. Deceleration occurs downstream of the channel exit with a rapid change from sinking motion to rising motion (>3 cm s−1). Under normal or strong trade wind conditions, the flow is subcritical [Froude number (Fr) < 1] upstream of the channel, supercritical (Fr > 1) in the exit region, and subcritical again (Fr < 1) downstream with a weak hydraulic jump. The localized sinking motion on the lee side of bordering ridgelines (>1 m s−1) is most significant in the afternoon hours and results in warming and lowering of surface pressure on the lee side, into the channel, and farther downstream. As a result, the channel winds and the wind speed maximum along the southeastern coast of Maui exhibit an afternoon maximum.

Current affiliation: Vietnam Institute of Meteorology, Hydrology, and Climate Change, Hanoi, Vietnam.

Corresponding author address: Yi-Leng Chen, Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI 96822. E-mail: yileng@hawaii.edu
Save
  • Baines, P. G., 1995: Topographic Effects in Stratified Flow. Cambridge University Press, 496 pp.

  • Carlis, D. L., Y.-L. Chen, and V. R. Morris, 2010: Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions. Mon. Wea. Rev., 138, 27062736, doi:10.1175/2009MWR3236.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface/hydrological model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., and A. J. Nash, 1994: Diurnal variation of surface airflow and rainfall frequencies on the island of Hawaii. Mon. Wea. Rev., 122, 3456, doi:10.1175/1520-0493(1994)122<0034:DVOSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., and J. Feng, 2001: Numerical simulations of airflow and cloud distributions over the windward side of the island of Hawaii. Part I: The effects of trade wind inversion. Mon. Wea. Rev., 129, 11171134, doi:10.1175/1520-0493(2001)129<1117:NSOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., R. C. Beardsley, and R. Limeburner, 1995: Winds in the Strait of Gibraltar. Quart. J. Roy. Meteor. Soc., 121, 19031921, doi:10.1002/qj.49712152807.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, B. Blumen, Ed., Amer. Meteor. Soc., 59–81.

  • Feng, J., and Y.-L. Chen, 2001: Numerical simulations of airflow and cloud distributions over the windward side of the island of Hawaii. Part II: Nocturnal flow regime. Mon. Wea. Rev., 129, 11351147, doi:10.1175/1520-0493(2001)129<1135:NSOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaberšek, S., and D. R. Durran, 2004: Gap flows through idealized topography. Part I: Forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci., 61, 28462862, doi:10.1175/JAS-3340.1.

    • Search Google Scholar
    • Export Citation
  • Grace, W. J., 1991: Hydraulic jump in a fog bank. Aust. Meteor. Mag., 39, 205209.

  • Hafner, J., and S.-P. Xie, 2003: Far-field simulation of the Hawaiian wake: Sea surface temperature and orographic effects. J. Atmos. Sci., 60, 30213032, doi:10.1175/1520-0469(2003)060<3021:FSOTHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., E. A. Meindl, and D. B. Gilhousen, 1994: Determining the power-law wind profile exponent under near-neutral stability conditions at sea. J. Appl. Meteor., 33, 757765, doi:10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. E. Overland, 1989: Atmospheric structure and momentum balance during a gap-wind event in Shelikof Strait, Alaska. Mon. Wea. Rev., 117, 18171833, doi:10.1175/1520-0493(1989)117<1817:ASAMBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, E. K. L., 2004: An observational study of the trade wind mixed layer. M.S. thesis, Department of Meteorology, University of Hawai‘i at Mānoa, 90 pp.

  • Leopold, L. B., 1949: The interaction of trade wind and sea breeze, Hawaii. J. Meteor., 6, 312–320, doi:10.1175/1520-0469(1949)006<0312:TIOTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., S. Businger, M. D. Albright, and Z. A. Tucker, 1995: A windstorm in the lee of a gap in a coastal mountain barrier. Mon. Wea. Rev., 123, 315331, doi:10.1175/1520-0493(1995)123<0315:AWITLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., M. D. Warner, and R. Steed, 2014: Strong westerly wind events in the Strait of Juan de Fuca. Wea. Forecasting, 29, 445465, doi:10.1175/WAF-D-13-00026.1.

    • Search Google Scholar
    • Export Citation
  • Nickerson, E. C., and M. A. Dias, 1981: On the existence of atmospheric vortices downwind of Hawaii during the HAMEC project. J. Appl. Meteor., 20, 868873, doi:10.1175/1520-0450(1981)020<0868:OTEOAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., 1984: Scale analysis of marine winds in straits and along mountainous coasts. Mon. Wea. Rev., 112, 2530–2534, doi:10.1175/1520-0493(1984)112<2530:SAOMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and B. A. Walter, 1981: Gap winds in the Strait of Juan de Fuca. Mon. Wea. Rev., 109, 22212233, doi:10.1175/1520-0493(1981)109<2221:GWITSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, F., and R. B. Smith, 1999: Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci., 56, 905923, doi:10.1175/1520-0469(1999)056<0905:GWAWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Patzert, W. C., 1969: Eddies in Hawaiian waters. HIG Rep. HIG-69-8, Hawaii Institute of Geophysics, University of Hawai‘i at Mānoa, Honolulu, HI, 51 pp.

  • Reed, T. R., 1931: Gap winds of the Strait of Juan de Fuca. Mon. Wea. Rev., 59, 373376, doi:10.1175/1520-0493(1931)59<373:GWOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, cited 2001: Changes to the NCEP meso eta analysis and forecast system: Increase in resolution, new cloud microphysics, modified precipitation assimilation, and modified 3DVAR analysis. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.]

  • Saito, K., 1993: A numerical study of the local downslope wind “Yamaji-kaze” in Japan. Part 2: Non-linear aspect of the 3-d flow over a mountain range with a col. J. Meteor. Soc. Japan, 71, 247272.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 13731400, doi:10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., 1993: Climate controls. Prevailing Trade Winds, M. Sanderson, Ed., University of Hawaii Press, 12–36.

  • Schultz, D. M., W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 539, doi:10.1175/1520-0493(1997)125<0005:TSCSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, and L. F. Bosart, 1998: Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, doi:10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1952: Mountain-gap winds; a study of surface wind at Gibraltar. Quart. J. Roy. Meteor. Soc., 78, 5361, doi:10.1002/qj.49707833507.

    • Search Google Scholar
    • Export Citation
  • Sharp, J., and C. F. Mass, 2004: Columbia gorge gap winds: Their climatological influence and synoptic evolution. Wea. Forecasting, 19, 970992, doi:10.1175/826.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270274, doi:10.1111/j.1600-0870.1989.tb00381.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and V. Grubišić, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50, 37283750, doi:10.1175/1520-0469(1993)050<3728:AOOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, doi:10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., D. M. Schultz, and B. A. Colle, 1998: The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126, 26732691, doi:10.1175/1520-0493(1998)126<2673:TSAEOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Winning, T. E., 2014: Detection of the inversion layer over the central North Pacific using GPS radio occultation. M.S. thesis, Department of Meteorology, University of Hawai‘i at Mānoa, 141 pp.

  • Yang, Y., Y.-L. Chen, and F. Fujioka, 2005: Numerical simulations of the island-induced circulations over the island of Hawaii during HaRP. Mon. Wea. Rev., 133, 36933713, doi:10.1175/MWR3053.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Y.-L. Chen, and F. Fujioka, 2008: Effect of trade-wind strength and direction on the leeside circulations and rainfall of the island of Hawaii. Mon. Wea. Rev., 136, 47994818, doi:10.1175/2008MWR2365.1.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2002: Stratified flow over a mountain with a gap: Linear theory and numerical simulations. Quart. J. Roy. Meteor. Soc., 128, 927949, doi:10.1256/0035900021643755.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y.-L. Chen, S.-Y. Hong, H.-M. H. Juang, and K. Kodama, 2005a: Validation of the coupled NCEP mesoscale spectral model and an advanced land surface model over the Hawaiian Islands. Part I: Summer trade wind conditions and a heavy rainfall event. Wea. Forecasting, 20, 847872, doi:10.1175/WAF891.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y.-L. Chen, and K. Kodama, 2005b: Validation of the coupled NCEP mesoscale spectral model and an advanced land surface model over the Hawaiian Islands. Part II: A high wind event. Wea. Forecasting, 20, 873895, doi:10.1175/WAF892.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1809 1409 645
PDF Downloads 297 80 13