• Baines, P. G., 1995: Topographic Effects in Stratified Flow. Cambridge University Press, 496 pp.

  • Carlis, D. L., , Y.-L. Chen, , and V. R. Morris, 2010: Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions. Mon. Wea. Rev., 138, 27062736, doi:10.1175/2009MWR3236.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface/hydrological model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., , and A. J. Nash, 1994: Diurnal variation of surface airflow and rainfall frequencies on the island of Hawaii. Mon. Wea. Rev., 122, 3456, doi:10.1175/1520-0493(1994)122<0034:DVOSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., , and J. Feng, 2001: Numerical simulations of airflow and cloud distributions over the windward side of the island of Hawaii. Part I: The effects of trade wind inversion. Mon. Wea. Rev., 129, 11171134, doi:10.1175/1520-0493(2001)129<1117:NSOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., , R. C. Beardsley, , and R. Limeburner, 1995: Winds in the Strait of Gibraltar. Quart. J. Roy. Meteor. Soc., 121, 19031921, doi:10.1002/qj.49712152807.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, B. Blumen, Ed., Amer. Meteor. Soc., 59–81.

  • Feng, J., , and Y.-L. Chen, 2001: Numerical simulations of airflow and cloud distributions over the windward side of the island of Hawaii. Part II: Nocturnal flow regime. Mon. Wea. Rev., 129, 11351147, doi:10.1175/1520-0493(2001)129<1135:NSOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaberšek, S., , and D. R. Durran, 2004: Gap flows through idealized topography. Part I: Forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci., 61, 28462862, doi:10.1175/JAS-3340.1.

    • Search Google Scholar
    • Export Citation
  • Grace, W. J., 1991: Hydraulic jump in a fog bank. Aust. Meteor. Mag., 39, 205209.

  • Hafner, J., , and S.-P. Xie, 2003: Far-field simulation of the Hawaiian wake: Sea surface temperature and orographic effects. J. Atmos. Sci., 60, 30213032, doi:10.1175/1520-0469(2003)060<3021:FSOTHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., , E. A. Meindl, , and D. B. Gilhousen, 1994: Determining the power-law wind profile exponent under near-neutral stability conditions at sea. J. Appl. Meteor., 33, 757765, doi:10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., , and J. E. Overland, 1989: Atmospheric structure and momentum balance during a gap-wind event in Shelikof Strait, Alaska. Mon. Wea. Rev., 117, 18171833, doi:10.1175/1520-0493(1989)117<1817:ASAMBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, E. K. L., 2004: An observational study of the trade wind mixed layer. M.S. thesis, Department of Meteorology, University of Hawai‘i at Mānoa, 90 pp.

  • Leopold, L. B., 1949: The interaction of trade wind and sea breeze, Hawaii. J. Meteor., 6, 312–320, doi:10.1175/1520-0469(1949)006<0312:TIOTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., , S. Businger, , M. D. Albright, , and Z. A. Tucker, 1995: A windstorm in the lee of a gap in a coastal mountain barrier. Mon. Wea. Rev., 123, 315331, doi:10.1175/1520-0493(1995)123<0315:AWITLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., , M. D. Warner, , and R. Steed, 2014: Strong westerly wind events in the Strait of Juan de Fuca. Wea. Forecasting, 29, 445465, doi:10.1175/WAF-D-13-00026.1.

    • Search Google Scholar
    • Export Citation
  • Nickerson, E. C., , and M. A. Dias, 1981: On the existence of atmospheric vortices downwind of Hawaii during the HAMEC project. J. Appl. Meteor., 20, 868873, doi:10.1175/1520-0450(1981)020<0868:OTEOAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., 1984: Scale analysis of marine winds in straits and along mountainous coasts. Mon. Wea. Rev., 112, 2530–2534, doi:10.1175/1520-0493(1984)112<2530:SAOMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and B. A. Walter, 1981: Gap winds in the Strait of Juan de Fuca. Mon. Wea. Rev., 109, 22212233, doi:10.1175/1520-0493(1981)109<2221:GWITSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, F., , and R. B. Smith, 1999: Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci., 56, 905923, doi:10.1175/1520-0469(1999)056<0905:GWAWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Patzert, W. C., 1969: Eddies in Hawaiian waters. HIG Rep. HIG-69-8, Hawaii Institute of Geophysics, University of Hawai‘i at Mānoa, Honolulu, HI, 51 pp.

  • Reed, T. R., 1931: Gap winds of the Strait of Juan de Fuca. Mon. Wea. Rev., 59, 373376, doi:10.1175/1520-0493(1931)59<373:GWOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., , T. Black, , B. Ferrier, , Y. Lin, , D. Parrish, , and G. DiMego, cited 2001: Changes to the NCEP meso eta analysis and forecast system: Increase in resolution, new cloud microphysics, modified precipitation assimilation, and modified 3DVAR analysis. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.]

  • Saito, K., 1993: A numerical study of the local downslope wind “Yamaji-kaze” in Japan. Part 2: Non-linear aspect of the 3-d flow over a mountain range with a col. J. Meteor. Soc. Japan, 71, 247272.

    • Search Google Scholar
    • Export Citation
  • Schär, C., , and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 13731400, doi:10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., 1993: Climate controls. Prevailing Trade Winds, M. Sanderson, Ed., University of Hawaii Press, 12–36.

  • Schultz, D. M., , W. E. Bracken, , L. F. Bosart, , G. J. Hakim, , M. A. Bedrick, , M. J. Dickinson, , and K. R. Tyle, 1997: The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 539, doi:10.1175/1520-0493(1997)125<0005:TSCSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., , W. E. Bracken, , and L. F. Bosart, 1998: Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, doi:10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1952: Mountain-gap winds; a study of surface wind at Gibraltar. Quart. J. Roy. Meteor. Soc., 78, 5361, doi:10.1002/qj.49707833507.

    • Search Google Scholar
    • Export Citation
  • Sharp, J., , and C. F. Mass, 2004: Columbia gorge gap winds: Their climatological influence and synoptic evolution. Wea. Forecasting, 19, 970992, doi:10.1175/826.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270274, doi:10.1111/j.1600-0870.1989.tb00381.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , and V. Grubišić, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50, 37283750, doi:10.1175/1520-0469(1993)050<3728:AOOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , R. M. Rasmussen, , and T. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, doi:10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., , D. M. Schultz, , and B. A. Colle, 1998: The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126, 26732691, doi:10.1175/1520-0493(1998)126<2673:TSAEOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Winning, T. E., 2014: Detection of the inversion layer over the central North Pacific using GPS radio occultation. M.S. thesis, Department of Meteorology, University of Hawai‘i at Mānoa, 141 pp.

  • Yang, Y., , Y.-L. Chen, , and F. Fujioka, 2005: Numerical simulations of the island-induced circulations over the island of Hawaii during HaRP. Mon. Wea. Rev., 133, 36933713, doi:10.1175/MWR3053.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., , Y.-L. Chen, , and F. Fujioka, 2008: Effect of trade-wind strength and direction on the leeside circulations and rainfall of the island of Hawaii. Mon. Wea. Rev., 136, 47994818, doi:10.1175/2008MWR2365.1.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2002: Stratified flow over a mountain with a gap: Linear theory and numerical simulations. Quart. J. Roy. Meteor. Soc., 128, 927949, doi:10.1256/0035900021643755.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , Y.-L. Chen, , S.-Y. Hong, , H.-M. H. Juang, , and K. Kodama, 2005a: Validation of the coupled NCEP mesoscale spectral model and an advanced land surface model over the Hawaiian Islands. Part I: Summer trade wind conditions and a heavy rainfall event. Wea. Forecasting, 20, 847872, doi:10.1175/WAF891.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , Y.-L. Chen, , and K. Kodama, 2005b: Validation of the coupled NCEP mesoscale spectral model and an advanced land surface model over the Hawaiian Islands. Part II: A high wind event. Wea. Forecasting, 20, 873895, doi:10.1175/WAF892.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 6
PDF Downloads 9 9 3

Numerical Simulations and Observations of Airflow through the ‘Alenuihāhā Channel, Hawaii

View More View Less
  • 1 Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

During the summer, sustained winds in the ‘Alenuihāhā Channel, Hawaii, may exceed 20 m s−1 with higher gusts. The Advanced Research Weather Research and Forecasting model is used to diagnose airflow in the Hawaiian coastal waters. High-resolution (2 km) runs are performed for July 2005 covering the ‘Alenuihāhā Channel and nested in a 6-km state domain. Under normal trade wind conditions (7–8 m s−1), winds at the channel entrance are 1–2 m s−1 faster than upstream due to the convergence of the deflected airflows by the islands of Maui and Hawaii, and accelerate through the channel due to along-gap pressure gradients and lower pressure in the wakes of both islands. The acceleration is accompanied by descending airflow (>9 cm s−1) in the exit region with lowering of the trade wind inversion. Deceleration occurs downstream of the channel exit with a rapid change from sinking motion to rising motion (>3 cm s−1). Under normal or strong trade wind conditions, the flow is subcritical [Froude number (Fr) < 1] upstream of the channel, supercritical (Fr > 1) in the exit region, and subcritical again (Fr < 1) downstream with a weak hydraulic jump. The localized sinking motion on the lee side of bordering ridgelines (>1 m s−1) is most significant in the afternoon hours and results in warming and lowering of surface pressure on the lee side, into the channel, and farther downstream. As a result, the channel winds and the wind speed maximum along the southeastern coast of Maui exhibit an afternoon maximum.

Current affiliation: Vietnam Institute of Meteorology, Hydrology, and Climate Change, Hanoi, Vietnam.

Corresponding author address: Yi-Leng Chen, Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI 96822. E-mail: yileng@hawaii.edu

Abstract

During the summer, sustained winds in the ‘Alenuihāhā Channel, Hawaii, may exceed 20 m s−1 with higher gusts. The Advanced Research Weather Research and Forecasting model is used to diagnose airflow in the Hawaiian coastal waters. High-resolution (2 km) runs are performed for July 2005 covering the ‘Alenuihāhā Channel and nested in a 6-km state domain. Under normal trade wind conditions (7–8 m s−1), winds at the channel entrance are 1–2 m s−1 faster than upstream due to the convergence of the deflected airflows by the islands of Maui and Hawaii, and accelerate through the channel due to along-gap pressure gradients and lower pressure in the wakes of both islands. The acceleration is accompanied by descending airflow (>9 cm s−1) in the exit region with lowering of the trade wind inversion. Deceleration occurs downstream of the channel exit with a rapid change from sinking motion to rising motion (>3 cm s−1). Under normal or strong trade wind conditions, the flow is subcritical [Froude number (Fr) < 1] upstream of the channel, supercritical (Fr > 1) in the exit region, and subcritical again (Fr < 1) downstream with a weak hydraulic jump. The localized sinking motion on the lee side of bordering ridgelines (>1 m s−1) is most significant in the afternoon hours and results in warming and lowering of surface pressure on the lee side, into the channel, and farther downstream. As a result, the channel winds and the wind speed maximum along the southeastern coast of Maui exhibit an afternoon maximum.

Current affiliation: Vietnam Institute of Meteorology, Hydrology, and Climate Change, Hanoi, Vietnam.

Corresponding author address: Yi-Leng Chen, Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI 96822. E-mail: yileng@hawaii.edu
Save